Acta Optica Sinica, Volume. 37, Issue 12, 1215005(2017)

Deep Network Saliency Detection Based on Global Model and Local Optimization

Feng Liu1、*, Tongsheng Shen2, Shuli Lou1, and Bing Han3
Author Affiliations
  • 1 Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai, Shandong 264001, China
  • 2 China Defense Science and Technology Information Center, Beijing 100142, China
  • 3 Element 98 of Unit 92493, PLA, Huludao, Liaoning 125000, China
  • show less
    Figures & Tables(9)
    Structure of model
    Network structure of global model
    Generation of feature vectors of super-pixel
    Saliency maps of different steps. (a) Original images; (b) global models; (c) images of local optimization; (d) final saliency maps; (e) ground truth images
    PR curves of four data sets with different methods. (a) SOD; (b) PASCAL-S; (c) CSSD; (d) MSRA
    Visual comparisons of our results and others. (a) Original images; (b) ground truth images; (c) proposed method; (d) LEGS; (e) DRFI; (f) HDCT; (g) wCtr; (h) PCA; (i) GBVS
    • Table 1. Feature vectors of contrast descriptor

      View table

      Table 1. Feature vectors of contrast descriptor

      Color texture featureDifferential feature
      FeatureDescriptorDimensionDefinitionDimension
      Average RGB valuea13d(aR1,a1I)3
      Average lab valuea23d(aR2,aI2)3
      Gabor filter responser24d(rR,rI)24
      Maximum Gabor responser1d(rR,rI)1
      RGB color histogramh124χ2(hR1,hI1)1
      Lab color histogramh224χ2(hR2,hI2)1
      HSV color histogramh324χ2(hR3,hI3)1
    • Table 2. Parameters of regional feature descriptor

      View table

      Table 2. Parameters of regional feature descriptor

      FeatureDimensionFeatureDimension
      Normalized x of regional center1Regional connectivity[16]1
      Normalized y of regional center1RGB color variance3
      Normalized are1Lab color variance3
      Aspect ratio of bounding box1HSV color variance3
      Bounding box width1Gabor filter response variance24
      Bounding box length1Normalized area of neighborhood1
    • Table 3. Comparison of F-measure scores with different methods%

      View table

      Table 3. Comparison of F-measure scores with different methods%

      DatasetCurveProposed methodLEGS methodDRFI methodHDCT methodwCtr methodGBVS methodPCA methodGC methodSF methodMR method
      SODF-measure73.167.470.265.463.761.354.950.655.354.2
      MAE20.421.224.126.624.526.925.328.826.727.4
      CSSDF-measure84.683.178.870.566.865.357.555.754.567.5
      MAE12.811.917.919.918.422.725.223.420.119.0
      PASCALF-measure75.374.969.960.461.169.353.161.657.458.3
      MAE14.715.520.322.920.117.823.925.521.421.2
      MSRAF-measure91.290.591.980.578.365.970.168.262.578.3
      MAE10.48.914.311.916.613.718.914.716.213.0
    Tools

    Get Citation

    Copy Citation Text

    Feng Liu, Tongsheng Shen, Shuli Lou, Bing Han. Deep Network Saliency Detection Based on Global Model and Local Optimization[J]. Acta Optica Sinica, 2017, 37(12): 1215005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 10, 2017

    Accepted: --

    Published Online: Sep. 6, 2018

    The Author Email: Liu Feng (liufeng_cv@126.com)

    DOI:10.3788/AOS201737.1215005

    Topics