Acta Optica Sinica, Volume. 36, Issue 6, 616002(2016)
Study on Mid-Infrared Spectral Properties of Ho3+/Yb3+ Co-Doped Fluorogermanate Glasses
[1] [1] Auzel F, Meichenin D, Poignant H. Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass[J]. Electronics Letters, 1988, 24(15): 909-910.
[2] [2] Zhong H, Chen B, Ren G, et al.. 2.7 μm emission of Nd3+, Er3+ codoped tellurite glass[J]. Journal of Applied Physics, 2009, 106(8): 083114.
[3] [3] De Sousa D F, Zonetti L F C, Bell M J V, et al.. On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7): 908-910.
[4] [4] Zhao Guoying, Fang Yongzheng, Zhang Na, et al.. Efficient emission of 2.7 μm from diode-pumped Er3+/Nd3+ co-doped bismuth germanate glass[J]. Chinese J Lasers, 2015, 42(7): 0706004.
[6] [6] Zhang Mingjie, Yang Anping, Zhang Bin, et al.. 3~5 μm luminescence of Dy3+-doped Ga-Sb-S chalcogenide glasses[J]. Chinese J Lasers, 2015, 42(8): 0806001.
[7] [7] He J, Zhou Z, Zhan H, et al.. 2.85 μm fluorescence of Ho-doped water-free fluorotellurite glasses[J]. Journal of Luminescence, 2014, 145(12): 507-511.
[8] [8] Johnson L F, Boyd G D, Nassau K. Optical maser characteristics of Ho3+ in CaWO4[J]. Proceedings of IRE, 1962, 50(87): 45.
[9] [9] Zhang L M, Wang Z X, Lu Z X, et al.. Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 4710-4713.
[10] [10] Yu S Y, Zhi Y X, Su H Q. Hydrothermal synthesis and upconversion properties of CaF2:Er3+/Yb3+ nanocrystals[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(5): 3380-3386.
[11] [11] Richards B, Jha A, Tsang Y, et al.. Tellurite glass lasers operating close to 2 μm[J]. Laser Physics Letters, 2010, 7(3): 177-193.
[12] [12] Rangel-Rojo R, Kosa T, Hajto E, et al.. Near-infrared optical nonlinearities in amorphous chalcogenides[J]. Optics Communications, 1994, 109(1): 145-150.
[13] [13] Walsh B M, Barnes N P. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm[J]. Applied Physics B, 2004, 78(3-4): 325-333.
[14] [14] Geng J H, Wu J F, Jiang S B, et al.. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 2007, 32(4): 355-357.
[15] [15] Lilly C M, McLaughlin J M, Zhao H F, et al.. A multicenter study of ICU telemedicine reengineering of adult critical care[J]. CHEST Journal, 2014, 145(3): 500-507.
[16] [16] Brida D, Cirmi G, Manzoni C, et al.. Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier[J]. Optics Letters, 2008, 33(7): 741-743.
[17] [17] Kostencka J, Kozacki T, Ku A, et al.. Accurate approach to capillary-supported optical diffraction tomography[J]. Optics Express, 2015, 23(6): 7908-7923.
[18] [18] Bayya S S, Chin G D, Sanghera J S, et al.. VIS-IR transmitting BGG glass windows[C]. SPIE, 2003, 5078: 208-215.
[19] [19] Guo Y Y, Li M, Hu L L, et al.. Intense 2.7 μm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass[J]. Optics Letters, 2012, 37(2): 268-270.
[20] [20] Xu R R, Tian Y, Hu L L, et al.. Origin of 2.7 μm luminescence and energy transfer process of Er3+∶4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses[J]. Journal of Applied Physics, 2012, 111(3): 033524.
[21] [21] Tian Y, Xu R R, Zhang L Y, et al.. Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass[J]. Optics Letters, 2011, 36(2): 109-111.
[22] [22] Jewell J M, Higby P L, Aggarwal I D. Properties of BaO-R2O3-Ga2O3-GeO2 (R=Y, Al, La, and Gd) glasses[J]. Journal of the American Ceramic Society, 1994, 77(3): 697-700.
[23] [23] Bai G X, Tao L L, Li K F, et al.. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass[J]. Optical Materials, 2013, 35(6): 1247-1250.
[24] [24] Li M, Bai G X, Guo Y Y, et al.. Investigation on Tm3+-doped silicate glass for 1.8 μm emission[J]. Journal of Luminescence, 2012, 132(7): 1830-1835.
[25] [25] Li K F, Zhang Q, Bai G X, et al.. Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses[J]. Journal of Alloys and Compounds, 2010, 504(2): 573-578.
[26] [26] Yi L X, Wang M, Feng S Y, et al.. Emissions properties of Ho3+∶5I7→5I8 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses[J]. Optical Materials, 2009, 31(11): 1586-1590.
[27] [27] Peng B, Izumitani T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses sensitized by Yb3+[J]. Optical Materials, 1995, 4(6): 797-810.
[28] [28] Yuan J, Shen S X, Chen D D, et al.. Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser[J]. Journal of Applied Physics, 2013, 113(17): 173507.
[29] [29] Wei T, Tian C, Cai M, et al.. Broadband 2 μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 95-104.
[30] [30] Xu R, Wang M, Tian Y, et al.. 2.05 μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+[J]. Journal of Applied Physics, 2011, 109(5): 053503.
[31] [31] Zhang L, Yang Z, Tian Y, et al.. Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass[J]. Journal of Applied Physics, 2011, 110(9): 093106.
[32] [32] Chen G X, Zhang Q Y, Yang G F, et al.. Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+[J]. Journal of Fluorescence, 2007, 17(3): 301-307.
[33] [33] Mccumber D E. Theory of phonon-terminated optical masers[J]. Physical Review, 1964, 134(2A): A299-A306.
[34] [34] Huang F F, Cheng J M, Liu X Q, et al.. Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications[J]. Optics Express, 2014, 22(17): 20924-20935.
Get Citation
Copy Citation Text
Qian Guoquan, Tang Guowu, Qian Qi, Chen Ganxin. Study on Mid-Infrared Spectral Properties of Ho3+/Yb3+ Co-Doped Fluorogermanate Glasses[J]. Acta Optica Sinica, 2016, 36(6): 616002
Category: Materials
Received: Jan. 13, 2016
Accepted: --
Published Online: May. 25, 2016
The Author Email: Guoquan Qian (msqianguoquan@mail.scut.edu.cn)