Acta Optica Sinica, Volume. 42, Issue 6, 0600001(2022)

Opportunities and Challenges for Development of Atmospheric Environmental Optics Monitoring Technique Under "Double Carbon" Goal

Wenqing Liu*
Author Affiliations
  • Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • show less
    References(85)

    [1] Feng Y Y, Ning M, Lei Y et al. Defending blue sky in China: effectiveness of the “air pollution prevention and control action plan” on air quality improvements from 2013 to 2017[J]. Journal of Environmental Management, 252, 109603(2019).

    [2] Jiang X, Li G L, Fu W. Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the three-year action plan to win the blue sky defense war[J]. Journal of Environmental Management, 277, 111470(2021).

    [3] Fan H, Zhao C F, Yang Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014—2018[J]. Atmospheric Environment, 220, 117066(2020).

    [4] Liu C, Xing C Z, Hu Q H, PM2.5 over China[EB/OL] et al. -06-01)[2022-01-29]. https:∥www.sciencedirect.com/science/article/pii/S209580992100268X.(2021).

    [5] Hu Q H, Liu C, Ji X et al. Vertical structure of the transport fluxes of aerosol and its precursors on the southwest transport pathway in the Beijing-Tianjin-Hebei region. [C]∥EGU General Assembly 2020, May 4-8, 2020, online. München: EGU(2020).

    [6] Meng F H, Qin M, Tang K et al. High-resolution vertical distribution and sources of HONO and NO2 in the nocturnal boundary layer in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 20, 5071-5092(2020).

    [7] Zhang K, Zhou L, Fu Q Y et al. Vertical distribution of ozone over Shanghai during late spring: a balloon-borne observation[J]. Atmospheric Environment, 208, 48-60(2019).

    [8] Li X B, Peng Z R, Lu Q C et al. Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors[J]. Atmospheric Environment, 222, 117134(2020).

    [9] Albert S, Amarilla A A, Trollope B et al. Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2[J]. Environmental Research, 196, 110944(2021).

    [10] Chen Q, Li X B, Song R F et al. Development and utilization of hexacopter unmanned aerial vehicle platform to characterize vertical distribution of boundary layer ozone in wintertime[J]. Atmospheric Pollution Research, 11, 1073-1083(2020).

    [11] Wu C, Liu B, Wu D et al. Vertical profiling of black carbon and ozone using a multicopter unmanned aerial vehicle (UAV) in urban Shenzhen of South China[J]. Science of the Total Environment, 801, 149689(2021).

    [12] Allan R P, Arias P A, Berger S et al[M]. Climate change 2021: the physical science basis(2021).

    [13] Liu W Q[M]. Environmental optics and technology(2020).

    [14] Wang Z J, Hao J, Song C G et al. Traffic pollution gas monitoring based on differential optical absorption spectroscopy technology[J]. Laser & Optoelectronics Progress, 57, 093003(2020).

    [15] Huang Y Y, Li A, Qin M et al. Nitrogen oxides spatial distribution and emissions with mobile multi-axis differential optical absorption spectroscopy in Wuhan City[J]. Acta Optica Sinica, 41, 1030002(2021).

    [16] Wang X R, Cai X S, Chen J et al. Analytical simulation of ultraviolet differential absorption spectra of benzene, toluene, and xylenes[J]. Laser & Optoelectronics Progress, 57, 233004(2020).

    [17] Kou X W, Zhou B, Liu X C et al. Measurement of trace NH3 concentration in atmosphere by cavity ring-down spectroscopy[J]. Acta Optica Sinica, 38, 1130001(2018).

    [18] Chen B, Sun Y R, Zhou Z Y et al. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis[J]. Applied Optics, 53, 7716-7723(2014).

    [19] Ma G S, He Y B, Chen B et al. Quasi-simultaneous sensitive detection of two gas species by cavity-ringdown spectroscopy with two lasers[J]. Sensors, 21, 7622(2021).

    [20] Prasad P, Raman M R, Ratnam M V et al. Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India[J]. Atmospheric Environment, 213, 185-198(2019).

    [21] Wang X Q, Zhang T S, Pei C L et al. Monitoring of vertical distribution of ozone using differential absorption lidar in Guangzhou[J]. Chinese Journal of Lasers, 46, 1211003(2019).

    [22] Xu B, Ye X X, Zhang Y et al. Emission characteristics of VOCs from urban catering using portable FTIR technology[J]. Journal of Atmospheric and Environmental Optics, 15, 357-364(2020).

    [23] Shan C G, Wang W, Liu C et al. Retrieval of vertical profiles and tropospheric CO2 columns based on high-resolution FTIR over Hefei, China[J]. Optics Express, 29, 4958-4977(2021).

    [24] Lan L J, Ghasemifard H, Yuan Y et al. Assessment of urban CO2 measurement and source attribution in Munich based on TDLAS-WMS and trajectory analysis[J]. Atmosphere, 11, 58(2020).

    [25] Xin F X, Li J, Guo J J et al. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J]. Sensors, 21, 1722(2021).

    [26] Zang Y P, Nie W, Xu Z Y et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 38, 1130004(2018).

    [27] Cui H B, Wang F, Li M Y. Measurements of CO2 temperature and concentration in high temperature environment based on tunable diode laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 55, 053003(2018).

    [28] Wei M, Kan R F, Chen B et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 123, 149(2017).

    [29] Chen X, Yang C G, Hu M et al. Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy[J]. Chinese Physics B, 27, 040701(2018).

    [30] Shao L G, Chen J J, Wang K Y et al. Highly precise measurement of atmospheric N2O and CO using improved white cell and RF current perturbation[J]. Sensors and Actuators B: Chemical, 352, 130995(2022).

    [31] Shao L G, Fang B, Zheng F et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117118(2019).

    [32] Yang C G, Mei L, Wang X P et al. Simultaneous measurement of gas absorption and path length by employing the first harmonic phase angle method in wavelength modulation spectroscopy[J]. Optics Express, 28, 3289-3297(2020).

    [33] Rodin A, Klimchuk A, Nadezhdinskiy A et al. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption[J]. Optics Express, 22, 13825-13834(2014).

    [34] Hoffmann A. MacLeod N A, Huebner M, et al. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements[J]. Atmospheric Measurement Techniques, 9, 5975-5996(2016).

    [35] Wilson E L. McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column[J]. Applied Physics B, 114, 385-393(2014).

    [36] Kukui A. Ancellet G, le Bras G. Chemical ionisation mass spectrometer for measurements of OH and peroxy radical concentrations in moderately polluted atmospheres[J]. Journal of Atmospheric Chemistry, 61, 133-154(2008).

    [37] Vlemmix T. Piters A J M, Berkhout A J C, et al. Ability of the MAX-DOAS method to derive profile information for NO2: can the boundary layer and free troposphere be separated?[J]. Atmospheric Measurement Techniques, 4, 2659-2684(2011).

    [38] Bösch T, Rozanov V, Richter A et al. BOREAS: a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases[J]. Atmospheric Measurement Techniques, 11, 6833-6859(2018).

    [39] Beirle S, Dörner S, Donner S et al. The Mainz profile algorithm (MAPA)[J]. Atmospheric Measurement Techniques, 12, 1785-1806(2019).

    [40] Lukas T J, Udo F, François H et al. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign[J]. Atmospheric Measurement Techniques, 14, 1-35(2021).

    [41] Wang Y, Apituley A, Bais A et al. Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign[J]. Atmospheric Measurement Techniques, 13, 5087-5116(2020).

    [42] Frieß U, Beirle S, Alvarado Bonilla L et al. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data[J]. Atmospheric Measurement Techniques, 12, 2155-2181(2019).

    [43] Wang Y. Puᶄīte J, Wagner T, et al. Vertical profiles of tropospheric ozone from MAX-DOAS measurements during the CINDI-2 campaign: part 1: development of a new retrieval algorithm[J]. Journal of Geophysical Research: Atmospheres, 123, 10637-10670(2018).

    [44] Richter A, Adukpo D, Fietkau S et al. Sciamachy validation using ground-based DOAS measurements of the University of Bremen BREDOM network. [C]∥Proceeding of ENVISAT Validation Workshop, December 9-13, 2002, Frascati, Italy. [S.l.: s.n.](2002).

    [45] Kanaya Y, Irie H, Takashima H et al. Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007-2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations[J]. Atmospheric Chemistry and Physics, 14, 7909-7927(2014).

    [46] Galle B, Johansson M, Rivera C et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC): a global network for volcanic gas monitoring: network layout and instrument description[J]. Journal of Geophysical Research Atmospheres, 115, D05304(2010).

    [47] Zhang S L, Li B, Liu L et al. Prediction of vertical profile of NO2 using deep multimodal fusion network based on the ground-based 3-D remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2021).

    [48] Xiang Y, Lü L H, Chai W X et al. Using lidar technology to assess regional air pollution and improve estimates of PM2.5 transport in the North China Plain[J]. Environmental Research Letters, 15, 094071(2020).

    [49] Wang Z, Liu C, Xie Z Q et al. Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution[J]. Atmospheric Chemistry and Physics, 20, 14917-14932(2020).

    [50] Langford A O. Alvarez R J II, Brioude J, et al. Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): observations and comparison to HYSPLIT, RAQMS, and FLEXPART[J]. Atmospheric Environment, 174, 1-14(2018).

    [51] Pappalardo G, Amodeo A, Apituley A et al. EARLINET: towards an advanced sustainable European aerosol lidar network[J]. Atmospheric Measurement Techniques, 7, 2389-2409(2014).

    [52] Xiang Y, Zhang T S, Ma C Q et al. Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain[J]. Atmospheric Chemistry and Physics, 21, 7023-7037(2021).

    [53] Wang J, Wang G, Tan T et al. Mid-infrared laser heterodyne radiometer (LHR) based on a 3.53 μm room-temperature interband cascade laser[J]. Optics Express, 27, 9610-9619(2019).

    [54] Deng H, Yang C G, Wang W et al. Near infrared heterodyne radiometer for continuous measurements of atmospheric CO2 column concentration[J]. Infrared Physics & Technology, 101, 39-44(2019).

    [55] Deng H, Yang C G, Xu Z Y et al. Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column[J]. Optics Express, 29, 2003-2013(2021).

    [56] Tan W, Zhao S H, Liu C et al. Estimation of winter time NOx emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations[J]. Atmospheric Environment, 200, 228-242(2019).

    [57] Lü L H, Xiang Y, Zhang T S et al. Comprehensive study of regional haze in the North China Plain with synergistic measurement from multiple mobile vehicle-based lidars and a lidar network[J]. The Science of the Total Environment, 721, 137773(2020).

    [58] Hong Q Q, Liu C, Chan K L et al. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River[J]. Atmospheric Chemistry and Physics, 18, 5931-5951(2018).

    [59] Tan W, Liu C, Wang S et al. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellites data[J]. Atmospheric Chemistry and Physics, 18, 15387-15402(2018).

    [60] Xi L, Si F Q, Jiang Y et al. First high-resolution tropospheric NO2 observations from the Ultraviolet Visible Hyperspectral Imaging Spectrometer (UVHIS)[J]. Atmospheric Measurement Techniques, 14, 435-454(2021).

    [61] Fujinawa T, Kuze A, Suto H et al. 48(14): e2021GL092685[J]. CO2 from power plant plumes by airborne remote sensing. Geophysical Research Letters(2021).

    [62] Xing C Z, Liu C, Wang S S et al. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China[J]. Atmospheric Chemistry and Physics, 17, 14275-14289(2017).

    [63] Liu C, Gao M, Hu Q H et al. Stereoscopic monitoring: a promising strategy to advance diagnostic and prediction of air pollution[J]. Bulletin of the American Meteorological Society, 102, E730-E737(2021).

    [64] Stowe L L. The use of AVHRR measurements of reflected sunlight for global sensing of aerosol particle optical thickness from Tiros-N satellites. [C]∥Joint Conference on Sensing of Environmental Pollutants, 4th, New Orleans, La., November 6-11, 1977. Washington, D.C.: American Chemical Society, 143-146(1978).

    [65] Sweet C, Bird R A, Cavanagh D et al. The local origin of the febrile response induced in ferrets during respiratory infection with a virulent influenza virus[J]. British Journal of Experimental Pathology, 60, 300-308(1979).

    [66] Song Z J, Fu D S, Zhang X L et al. MODIS AOD sampling rate and its effect on PM2.5 estimation in North China[J]. Atmospheric Environment, 209, 14-22(2019).

    [67] de Oliveira A M, Souza C T et al. Analysis of atmospheric aerosol optical properties in the northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/CALIPSO satellites, AERONET photometers and a ground-based lidar[J]. Atmosphere, 10, 594(2019).

    [68] Burrows J P, Weber M, Buchwitz M et al. The global ozone monitoring experiment (GOME): mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 56, 151-175(1999).

    [69] Piters A J M, Bramstedt K, Lambert J C et al. Overview of SCIAMACHY validation: 2002—2004[J]. Atmospheric Chemistry and Physics, 6, 127-148(2006).

    [70] Boersma K F, Eskes H J, Veefkind J P et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 7, 2103-2118(2007).

    [71] Flynn L, Long C, Wu X et al. Performance of the ozone mapping and profiler suite (OMPS) products[J]. Journal of Geophysical Research: Atmospheres, 119, 6181-6195(2014).

    [72] Lorente A, Boersma K F, Eskes H J et al. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI[J]. Scientific Reports, 9, 20033(2019).

    [73] Zhang C X, Liu C, Chan K L et al. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite[J]. Light: Science & Applications, 9, 66(2020).

    [74] Zhao R, Zhang C X, Wu Y et al. Analysis of spatio-temporal variations of tropospheric nitrogen dioxide in the North China plain based on EMI[J]. Journal of Atmospheric and Environmental Optics, 16, 186-196(2021).

    [75] Reuter M, Buchwitz M, Schneising O et al. A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds[J]. Atmospheric Measurement Techniques, 3, 209-232(2010).

    [76] Yokota T, Yoshida Y, Eguchi N et al. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results[J]. SOLA, 5, 160-163(2009).

    [77] Nakajima M, Kuze A, Suto H. The current status of GOSAT and the concept of GOSAT-2[J]. Proceedings of SPIE, 8533, 853306(2012).

    [78] Reuter M, Buchwitz M, Schneising O et al. Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites[J]. Atmospheric Chemistry and Physics, 19, 9371-9383(2019).

    [79] Köehler P, Frankenberg C, Magney T S et al. Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter-sensor comparison to OCO-2[J]. Geophysical Research Letters, 45, 10456-10463(2018).

    [80] Eldering A, Taylor T E. O’Dell C W, et al. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques, 12, 2341-2370(2019).

    [81] Hong X H, Zhang P, Bi Y M et al. Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16(2021).

    [82] Ye H H, Wang X H, Wu S C et al. Atmospheric CO2 retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5[J]. Journal of Atmospheric and Environmental Optics, 16, 231-238(2021).

    [83] Tian Y, Sun Y W, Borsdorff T et al. Quantifying CO emission rates of industrial point sources from Tropospheric Monitoring Instrument observations[J]. Environmental Research Letters, 17, 014057(2022).

    [86] Zheng B, Chevallier F, Ciais P et al. Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2[J]. Atmospheric Chemistry and Physics, 20, 8501-8510(2020).

    [87] Liu F, Duncan B N, Krotkov N A et al. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide[J]. Atmospheric Chemistry and Physics, 20, 99-116(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wenqing Liu. Opportunities and Challenges for Development of Atmospheric Environmental Optics Monitoring Technique Under "Double Carbon" Goal[J]. Acta Optica Sinica, 2022, 42(6): 0600001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 29, 2022

    Accepted: Feb. 16, 2022

    Published Online: Mar. 8, 2022

    The Author Email: Liu Wenqing (wqliu@aiofm.ac.cn)

    DOI:10.3788/AOS202242.0600001

    Topics