Journal of Inorganic Materials, Volume. 40, Issue 2, 159(2025)

Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance

Wenkai FAN1,2, Xiao YANG1, Honghua LI1, Yong LI1, and Jiangtao LI1、*
Author Affiliations
  • 11. Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • show less

    Rare-earth zirconates (REZs) have attracted attention in the field of thermal barrier materials because they are more resistant to calcium-magnesium-aluminum-silicon oxide (CMAS) corrosion than yttria stabilized zirconia (YSZ). High-entropy design of zirconates is an effective method to enhance CMAS corrosion resistance, but currently the ability of its corrosion resistance still does not meet the growing requirement. In this work, a solid-state reaction technique was used to synthesize high-entropy rare-earth zirconate (HE-REZ) (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 powder with a single-phased defect fluorite structure, and pressureless sintering (PLS) combined with cold isostatic pressing (CIP) technique was used to efficiently prepare bulk samples. The phase composition, microstructure, element distribution, thermal and mechanical properties were studied, focusing on the CMAS corrosion resistance. According to the results, under the same CMAS corrosion environment at 1300 ℃, the corrosion depth of HE-REZ with a relative density of 98.6% is only 2.6% of 7YSZ and 22.6% of Gd2Zr2O7 (GZO). The synergistic effect of zirconates' chemical inertness and high-entropy materials' sluggish diffusion accounts for this exceptional corrosion resistance. The obtained HE-REZ shows higher hardness and Young's modulus, larger coefficient of linear expansion, and lower thermal conductivity than ever, making its mechanical and thermal properties superior to GZO. All these outcomes demonstrate the good application potential of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 in the field of thermal barrier materials.

    Keywords
    Tools

    Get Citation

    Copy Citation Text

    Wenkai FAN, Xiao YANG, Honghua LI, Yong LI, Jiangtao LI. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 22, 2024

    Accepted: --

    Published Online: Apr. 24, 2025

    The Author Email: Jiangtao LI (lijiangtao@mail.ipc.ac.cn)

    DOI:10.15541/jim20240256

    Topics