Journal of Inorganic Materials, Volume. 39, Issue 11, 1197(2024)

Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents

Zezhu ZHOU1, Zihui LIANG1,2, Jing LI1、*, and Congcong WU1、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • 22. National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China
  • show less
    References(33)

    [3] KIM M, JEONG J, LU H et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 302(2022).

    [5] YANG Y, LIU C, DING Y et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules[J]. Nature Energy, 316(2024).

    [6] LI M, ZHU Z, WANG Z et al. High-quality hybrid perovskite thin films by post-treatment technologies in photovoltaic applications[J]. Advanced Materials, 2309428(2023).

    [7] HUI Z, XU Z, ZHU C et al. Progress on Large-area organic- inorganic hybrid perovskite films and its photovoltaic application[J]. Journal of Inorganic Materials, 457(2024).

    [8] LI D, ZHANG D, LIM K S et al. A review on scaling up perovskite solar cells[J]. Advanced Functional Materials, 2008621(2021).

    [9] CHEN C, GAO J, FENG S P. The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent[J]. International Materials Reviews, 301(2023).

    [11] CHOI H, CHOI K, CHOI Y et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives[J]. Small Methods, 1900569(2019).

    [12] NG A, REN Z, HU H et al. A Cryogenic process for antisolvent- free high-performance perovskite solar cells[J]. Advanced Materials, 1804402(2018).

    [13] CASSELLA E J, SPOONER E L K, SMITH J A et al. Binary solvent system used to fabricate fully annealing-free perovskite solar cells[J]. Advanced Energy Materials, 2203468(2023).

    [14] LIANG Z, SHI Y, YUAN T et al. Distinct reaction route toward high photovoltaic performance: perovskite salts versus crystals[J]. ACS Applied Energy Materials, 2247(2023).

    [15] WU C, WANG K, LI J et al. Volatile solution: the way toward scalable fabrication of perovskite solar cells?[J]. Matter, 775(2021).

    [16] WU C, WANG K, YAN Y et al. Fullerene polymer complex inducing dipole electric field for stable perovskite solar cells[J]. Advanced Functional Materials, 1804419(2019).

    [18] CHEN Y, MENG Q, XIAO Y et al. Mechanism of PbI2in situ passivated perovskite films for enhancing the performance of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 44101(2019).

    [19] GAO B, HU J, ZUO Z et al. Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells[J]. ACS Applied Materials & Interfaces, 40062(2022).

    [20] GAO Y, LIU C, XIE Y et al. Can nanosecond laser achieve high- performance perovskite solar modules with aperture area efficiency over 21%?[J]. Advanced Energy Materials, 2202287(2022).

    [21] XIE Y, DUAN J, PENG L et al. Understanding the mechanism of PbCl2 Additive for MAPbI3-based perovskite solar cells[J]. Advanced Photonics Research, 2100012(2021).

    [22] LING X, GUO J, SHEN C et al. High-throughput deposition of recyclable SnO2 electrodes toward efficient perovskite solar cells[J]. Small, 2308579(2023).

    [23] JIN B, MING Y, WU Z et al. Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability[J]. Nano Energy, 106936(2022).

    [24] ZHAO J J, SU X, MI Z et al. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination[J]. Rare Metals, 96(2021).

    [25] DAI X, ZHANG L, QIAN Y et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells via solvent engineering[J]. Journal of Inorganic Materials, 1089(2023).

    [26] CHENG J, CHOI I, KIM W et al. Wide-band-gap (2.0 eV) perovskite solar cells with a VOC of 1.325 V fabricated by a green- solvent strategy[J]. ACS Applied Materials & Interfaces, 23077(2023).

    [27] JIANG X, ZHANG B, YANG G et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells[J]. Angewandte Chemie International Edition, e202302462(2023).

    [29] CHEN S, YU X, CAI X et al. PbCl2-assisted film formation for high-efficiency heterojunction perovskite solar cells[J]. RSC Advances, 648(2016).

    [30] WANG P, ZHAO J, LIU J et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods[J]. Journal of Power Sources, 51(2017).

    [32] GALATOPOULOS F, SAVVA A, PAPADAS I T et al. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells[J]. APL Materials, 076102(2017).

    [33] HAILEGNAW B, SARICIFTCI N S, SCHARBER M C. Impedance spectroscopy of perovskite solar cells: studying the dynamics of charge carriers before and after continuous operation[J]. Physica Status Solidi (A) - Applications and Materials Science, 2000291(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zezhu ZHOU, Zihui LIANG, Jing LI, Congcong WU. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 21, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: Jing LI (lijing68@hubu.edu.cn), Congcong WU (ccwu@hubu.edu.cn)

    DOI:10.15541/jim20240138

    Topics