Optics and Precision Engineering, Volume. 32, Issue 16, 2564(2024)

Lightweight video super-resolution based on hybrid spatio-temporal convolution

Zhenping XIA1,3、*, Hao CHEN1, Yuning ZHANG2,4, Cheng CHENG1,3, and Fuyuan HU1,3
Author Affiliations
  • 1School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou25009, China
  • 2Display R&D Centre, School of Electronic Science & Engineering, Southeast University, Nanjing10096, China
  • 3Jiangsu Industrial Intelligent and Low-carbon Technology Engineering Center, Suzhou215009, China
  • 4Shi-Cheng Laboratory for Information Display and Visualization, Nanjing210013, China
  • show less
    Figures & Tables(17)
    Overall network structure
    Motion compensation structure
    Hybrid Spatial-Temporal Convolution
    2D Spatial Convolution
    Similarity-based feature selection
    Visual results of our network and its variants
    Reconstruction visual comparisons of the state-of-the-art algorithms and proposed network on three datasets for ×4 SR
    [in Chinese]
    • Table 1. Architecture of network

      View table
      View in Article

      Table 1. Architecture of network

      模块函数名卷积核大小
      运动补偿Cf (·)3×3×128
      Cg (·)3×3×128
      DConv3×3×128
      时空特征提取Ca (·)3×3×128
      CSC (·)3×3×128
      CTC (·)3×3×3×128
      Cfuse (·)3×3×128
      选择性特征融合θ(·)3×3×128
      ϕ(·)1×1×128
      Ce(·)1×1×128
      Up sampling3×3×48
    • Table 2. Quantitative comparison of different activation functions on the SPMCS-11 dataset

      View table
      View in Article

      Table 2. Quantitative comparison of different activation functions on the SPMCS-11 dataset

      模型三维卷积二维空间卷积特征选择模块PSNRSSIM
      TC-VSR29.470.869 9
      Deep-TC-VSR29.790.874 8
      S-TC-VSR29.720.873 4
      S-SC-VSR29.610.871 3
      HTSC-VSR29.590.873 5
      S-HTSC-VSR(Ours)30.510.880 9
    • Table 3. Network performance of different widths and depths

      View table
      View in Article

      Table 3. Network performance of different widths and depths

      深度宽度参数量/MPSNR/dBSSIM
      8643.930.210.870 1
      81285.230.270.874 4
      10646.830.430.875 2
      101289.730.510.880 9
    • Table 4. Average value of all video frames of different Loss Functions on the Vid4 dataset

      View table
      View in Article

      Table 4. Average value of all video frames of different Loss Functions on the Vid4 dataset

      MSE lossL1 lossCharbonnier loss
      PSNR27.2827.3627.43
    • Table 5. Quantitative comparisons of different algorithms for scale factor ×4 on Vid4 dataset(PSNR(dB)/SSIM)

      View table
      View in Article

      Table 5. Quantitative comparisons of different algorithms for scale factor ×4 on Vid4 dataset(PSNR(dB)/SSIM)

      片段名BicubicRCAN25DUF14TDAN21VSR-Transformer26BasicVSR++27Ours
      Calendar20.39/0.572 022.31/0.724 824.04/0.811 023.20/0.768 924.14/0.815 724.23/0.820 924.20/0.821 2
      City25.16/0.602 826.07/0.693 828.27/0.831 327.18/0.771 627.87/0.811 428.01/0.813 728.03/0.814 1
      Foliage23.47/0.566 624.69/0.662 826.41/0.770 925.64/0.728 426.29/0.761 326.34/0.765 426.39/0.766 5
      Walk26.10/0.797 428.64/0.871 830.30/0.914 129.80/0.894 030.91/0.910 931.11/0.915 431.09/0.915 7
      Average23.78/0.634 725.43/0.738 327.26/0.831 826.46/0.790 727.30/0.824 827.42/0.828 927.43/0.829 4
    • Table 6. Quantitative comparisons of different algorithms for scale factor ×4 on SPMCS-11 dataset(PSNR(dB)/SSIM)

      View table
      View in Article

      Table 6. Quantitative comparisons of different algorithms for scale factor ×4 on SPMCS-11 dataset(PSNR(dB)/SSIM)

      片段名BicubicRCAN25DUF14TDAN21VSR-Transformer26BasicVSR++27Ours
      Car_0527.75/0.782 529.84/0.848 330.77/0.870 530.59/0.865 332.13/0.903 232.31/0.905 432.42/0.906 3
      hdclub_00319.42/0.486 320.39/0.610 022.06/0.742 921.34/0.687 922.11/0.738 722.19/0.744 322.17/0.741 9
      hitachi_isee519.61/0.593 823.58/0.837 125.75/0.892 724.59/0.856 726.50/0.906 926.73/0.909 726.74/0.912 3
      hk004_00128.54/0.800 331.72/0.862 832.96/0.898 432.27/0.882 533.48/0.904 633.59/0.905 133.66/0.904 5
      HKVTG_00427.46/0.683 128.77/0.765 029.15/0.785 529.11/0.778 829.57/0.798 329.60/0.798 729.55/0.801 3
      jvc_00925.40/0.755 828.29/0.872 229.17/0.895 928.90/0.883 230.46/0.919 530.74/0.921 130.91/0.921 6
      NYVTG_00628.45/0.801 430.99/0.886 032.32/0.905 831.90/0.899 633.32/0.925 133.56/0.926 934.11/0.927 4
      PRVTG_01225.63/0.713 626.63/0.781 127.35/0.816 427.16/0.805 627.67/0.825 327.79/0.828 127.84/0.827 4
      RMVTG_01123.96/0.657 326.05/0.757 427.53/0.811 526.95/0.792 427.71/0.819 727.81/0.823 427.94/0.825 2
      veni3_01129.47/0.897 934.54/0.962 534.64/0.967 634.68/0.964 536.53/0.974 536.57/0.974 837.16/0.975 2
      veni5_01527.41/0.848 331.01/0.926 231.89/0.936 731.30/0.927 532.77/0.944 933.17/0.947 333.12/0.946 6
      Average25.73/0.739 128.35/0.828 129.42/0.865 928.98/0.849 530.20/0.878 230.37/0.880 430.51/0.880 9
    • Table 7. Quantitative comparisons of different algorithms for scale factor ×4 on Vimeo-90K-T dataset(PSNR(dB)/SSIM)

      View table
      View in Article

      Table 7. Quantitative comparisons of different algorithms for scale factor ×4 on Vimeo-90K-T dataset(PSNR(dB)/SSIM)

      算法慢速运动中速运动快速运动Average
      Bicubic29.34/0.833 031.29/0.870 834.07/0.905 031.32/0.868 4
      RCAN2532.92/0.902 835.33/0.926 538.45/0.945 335.32/0.924 5
      DUF1433.38/0.910 736.69/0.944 238.86/0.950 836.35/0.938 3
      TDAN2133.17/0.906 536.05/0.936 938.70/0.949 135.87/0.932 5
      VSR-Transformer2634.43/0.923 237.69/0.951 740.26/0.961 337.42/0.947 3
      BasicVSR++2734.58/0.925 637.75/0.952 740.49/0.962 437.52/0.948 6
      Ours34.53/0.924 637.81/0.953 540.56/0.963 337.56/0.949 0
      片段数量1 6164 9831 2257 824
      平均流大小0.62.58.33.0
    • Table 8. Quantitative comparisons on the real-world dataset

      View table
      View in Article

      Table 8. Quantitative comparisons on the real-world dataset

      评估指标BicubicRCAN25TDAN21BasicVSR++27Ours
      NIQE↓7.586.296.566.116.05
      SSEQ↓54.4046.3244.2641.1740.59
    • Table 9. Average running time on SPMCS-11 dataset for ×4 SR

      View table
      View in Article

      Table 9. Average running time on SPMCS-11 dataset for ×4 SR

      算法PSNR/dBSSIM参数量/MFLOPs/109平均运行时间/s
      RCAN2528.350.828 115.6261.461.586
      DUF1429.420.865 95.892.970.573
      3DSRNet1328.980.849 515.9127.490.778
      VSR-Transformer2630.200.878 243.8834.011.153
      BasicVSR++2730.370.880 46.411.070.067
      Ours30.510.880 99.719.040.115
    Tools

    Get Citation

    Copy Citation Text

    Zhenping XIA, Hao CHEN, Yuning ZHANG, Cheng CHENG, Fuyuan HU. Lightweight video super-resolution based on hybrid spatio-temporal convolution[J]. Optics and Precision Engineering, 2024, 32(16): 2564

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 28, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: Zhenping XIA (xzp@usts.edu.cn)

    DOI:10.37188/OPE.20243216.2564

    Topics