APPLIED LASER, Volume. 44, Issue 12, 89(2024)
Analysis of Cross Research Trends between Artificial Intelligence and Laser Technology
[2] [2] KOCH C. Seeing chips: Analog VLSI circuits for computer vision[J]. Neural Computation, 1989, 1(2): 184-200.
[3] [3] ADAM B L, QU Y S, DAVIS J W, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men[J]. Cancer Research, 2002, 62(13): 3609-3614.
[4] [4] LIU X Y, CHEN Z, WANG T, et al.Tissue imprinting on 2D nanoflakes-capped silicon nanowires for lipidomic mass spectrometry imaging and cancer diagnosis[J]. ACS Nano, 2022, 16(4): 6916-6928.
[5] [5] NACHTIGALL F M, PEREIRA A, TROFYMCHUK O S, et al. Detection of SARS-CoV-2 in nasal swabs using MALDI-MS[J]. Nature Biotechnology, 2020, 38(10): 1168-1173.
[6] [6] LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems[J].IEEE Signal Processing Magazine, 2020, 37(4): 50-61.
[7] [7] QI X B, CHEN G F, LI Y, et al.Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives[J]. Engineering, 2019, 5(4): 721-729.
[8] [8] CAGGIANO A, ZHANG J J, ALFIERI V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 2019, 68(1): 451-454.
[9] [9] LI L N, LIU X F, YANG F, et al.A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 180: 106183.
[10] [10] FERREIRA E C, MILORI D M B P, FERREIRA E J, et al.Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system[J]. Spectrochimica Acta-Part B: Atomic Spectroscopy, 2008, 63(10): 1216-1220.
[11] [11] SHENG L W, ZHANG T L, NIU G H, et al.Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(2): 453-458.
[12] [12] KROGAN N J, CAGNEY G, YU H Y, et al.Global landscape of protein complexes in the yeast Saccharomyces cerevisiae[J]. Nature, 2006, 440(7084): 637-643.
[13] [13] GUO Y L, WANG H Y, HU Q Y, et al.Deep learning for 3D point clouds: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4338-4364.
[14] [14] RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030.
[15] [15] TABOR D P, ROCH L M, SAIKIN S K, et al. Accelerating the discovery of materials for clean energy in the era of smart automation[J]. Nature Reviews Materials, 2018, 3: 5-20.
[16] [16] CHU S I, TELNOV D A. Beyond the Floquet theorem: Generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields[J]. Physics Reports, 2004, 390(1/2): 1-131.
[17] [17] SIMPSON R C. Smart wheelchairs: A literature review[J]. Journal of Rehabilitation Research and Development, 2005, 42(4): 423-436.
[18] [18] BENNEWITZ M, BURGARD W, CIELNIAK G, et al. Learning motion patterns of people for compliant robot motion[J]. The International Journal of Robotics Research, 2005, 24(1): 31-48.
[19] [19] MAHJOUBFAR A, CHURKIN D V, BARLAND S, et al. Timestretch and its applications[J]. Nature Photonics, 2017, 11: 341-351.
[20] [20] AGRANOFF D, FERNANDEZ-REYES D, PAPADOPOULOS M C, et al.Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum[J]. Lancet, 2006, 368(9540): 1012-1021.
[21] [21] LI S Y, ZHAO X F, ZHOU G Y. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(7): 616-634.
[22] [22] ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD H, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 2020, 9(5): 1189-1241.
[23] [23] SCIME L, BEUTH J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Additive Manufacturing, 2018, 19: 114-126.
[24] [24] YOU D Y, GAO X D, KATAYAMA S. WPD-PCA-based laser welding process monitoring and defectsdiagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636.
[25] [25] SHEVCHIK S A, KENEL C, LEINENBACH C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing, 2018, 21: 598-604.
[26] [26] SCIME L, BEUTH J. Using machine learning to identify in situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2019, 25: 151-165.
[27] [27] WU X, HONG D F, CHANUSSOT J. Convolutional neural networks for multimodal remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3124913.
Get Citation
Copy Citation Text
Liu Dejuan, Shen Li. Analysis of Cross Research Trends between Artificial Intelligence and Laser Technology[J]. APPLIED LASER, 2024, 44(12): 89
Received: Mar. 4, 2023
Accepted: Mar. 11, 2025
Published Online: Mar. 11, 2025
The Author Email: