High Power Laser and Particle Beams, Volume. 34, Issue 6, 065003(2022)
Numerical study on the characteristics of an arc jet plasma actuator
[1] Dorier J L, Gindrat M, Hollenstein C, et al. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch[J]. IEEE Transactions on Plasma Science, 29, 494-501(2001).
[2] Ghorui S, Sahasrabudhe S N, Murthy P S S, et al. A dc arc plasma torch as a tailored heat source for thermohydraulic simulation of proton beam–target interaction in ADSS[J]. Plasma Sources Science and Technology, 15, 689-694(2006).
[3] Bhuyan P J, Goswami K S. Two-dimensional and three-dimensional simulation of DC plasma torches[J]. IEEE Transactions on Plasma Science, 35, 1781-1786(2007).
[4] Kavka T, Matějíček J, Ctibor P, et al. Plasma spraying of copper by hybrid water-gas DC arc plasma torch[J]. Journal of Thermal Spray Technology, 20, 760-774(2011).
[5] Zhao Yizhe, Su Yilin, Hou Xuyan, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electronic Advances, 4, 210008(2021).
[6] Bublievsky A F, Gorbunov A V, Marquesi A R, et al. Generalization of the total current–voltage characteristics for transferred arc plasma torch with steam and air plasmas based on the analytical anisotropic model[J]. IEEE Transactions on Plasma Science, 43, 3707-3715(2015).
[7] Mavier F, Rat V, Coudert J F. Influence of time-modulation of applied current on arc stability in DC pulsed plasma spray torch[J]. IEEE Transactions on Plasma Science, 45, 565-573(2017).
[8] Ondac P, Maslani A, Hrabovsky M, et al. Measurement of anode arc attachment movement in DC arc plasma torch at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing, 38, 637-654(2018).
[9] Sun Qiang, Liu Yonghong, Han Yancong, et al. A novel experimental method of investigating anode-arc-root behaviors in a DC non-transferred arc plasma torch[J]. Plasma Sources Science and Technology, 29, 025008(2020).
[10] Pan Zihan, Ye Lei, Qian Shulou, et al. Comparison of Reynolds average Navier–Stokes turbulence models in numerical simulations of the DC arc plasma torch[J]. Plasma Science and Technology, 22, 025401(2020).
[11] Huang Heji, Pan Wenxia, Wu Chengkang. Arc root motion in an argon-hydrogen DC plasma torch[J]. IEEE Transactions on Plasma Science, 36, 1050-1051(2008).
[12] Lebouvier A, Delalondre C, Fresnet F, et al. Three-dimensional unsteady MHD modeling of a low-current high-voltage nontransferred DC plasma torch operating with air[J]. IEEE Transactions on Plasma Science, 39, 1889-1899(2011).
[13] Liang Peng, Groll R. Numerical study of plasma–electrode interaction during arc discharge in a DC plasma torch[J]. IEEE Transactions on Plasma Science, 46, 363-372(2018).
[14] Xu Xiaowen, Yang Shiyou, Zhou Qiang, et al. A 2-D axisymmetric magneto-hydrodynamic model of a DC arc plasma torch and its solution methodology[J]. IEEE Transactions on Magnetics, 56, 7503904(2020).
[15] Sun Jianghong, Sun Surong, Zhang Lihui, et al. Two-temperature chemical non-equilibrium modeling of argon DC arc plasma torch[J]. Plasma Chemistry and Plasma Processing, 40, 1383-1400(2020).
[16] [16] Chinè B. A 2D model of a plasma tch[C]Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich. 2016.
Get Citation
Copy Citation Text
Ye Yuan, Yan Zhang, Qing Zhao, Xiaoping Huang, Cheng Guo. Numerical study on the characteristics of an arc jet plasma actuator[J]. High Power Laser and Particle Beams, 2022, 34(6): 065003
Category: Pulsed Power Technology
Received: Nov. 26, 2021
Accepted: Mar. 15, 2022
Published Online: Jun. 2, 2022
The Author Email: Qing Zhao (zhaoq@uestc.edu.cn)