NUCLEAR TECHNIQUES, Volume. 47, Issue 11, 110502(2024)

Application of lightweight neural network models for nuclear pulse parameter prediction

Lin TANG1,3, Shuang ZHOU1, Xianli LIAO1,2, and Bo LI1、*
Author Affiliations
  • 1College of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China
  • 2School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • show less
    Figures & Tables(13)
    Diagram of pulse acquisition process
    Waveforms of negative exponential (a) and shaped (b) pulse sequence (color online)
    Schematic diagram of pulse discrimination process
    Execution process of pulse parameter prediction
    Illustration of negative exponential pulses in Dataset I (color online)
    Illustration of absolute error of amplitude parameters (a) and time parameters (b)
    Diagram of test set with additional white noise (color online)
    Diagram of test set with additional Gaussian noise (color online)
    Diagram of test set with additional flicker noise (color online)
    • Table 1. Comparison of pulse amplitude prediction results with different time parameters

      View table
      View in Article

      Table 1. Comparison of pulse amplitude prediction results with different time parameters

      幅度真值

      Ground truth of amplitude

      时间真值

      Ground truth of time

      成形的幅度参数

      Parameter A by shaping

      幅度绝对误差

      Absolute error of A

      幅度的相对误差Relative error of A / %成形的时间参数Parameter Tby shaping时间参数的绝对误差Absolute error of T时间参数的相对误差Relative error of T
      20406.8713.1365.654000
      20459.4110.5952.954500
      205011.658.3541.755000
      205513.616.3931.955500
      206015.324.6823.406000
      206516.813.1915.956500
      207018.111.899.457000
      207519.220.783.907500
      208020.0000.008000
    • Table 2. The details of data sets

      View table
      View in Article

      Table 2. The details of data sets

      数据集Data set数据集明细Data set details脉冲类型Types of pulses标签Labels大小Size

      数据集I

      Data set I

      模拟脉冲序列

      Simulated pulse sequences

      幅度,时间

      A, T

      121 770×256+121 770×2

      数据集II

      Data set II

      训练集Train set

      成形脉冲

      Shaping pulses

      97 416×256+97 416×2
      验证集Validation set12 177×256+12 177×2
      测试集Test set12 177×256+12 177×2
    • Table 3. The comparison of performance between different models

      View table
      View in Article

      Table 3. The comparison of performance between different models

      模型

      Models

      批大小

      Batch size

      学习率

      Learning rate

      训练损失

      Train loss

      验证损失

      Validation loss

      参数量

      Numbers of parameters

      相对误差Relative error / %
      幅度Amplitude / mV时间Time / ns
      LeNet511×10-3138.6940.290.13M1.124.34
      LSTM11×10-3160.8269.301.97M2.046.69
      CNN-LSTM11×10-3242.3328.721.10M0.983.93
      GRU11×10-3210.4830.662 4711.515.02
      CNN-GRU11×10-3367.14148.741.11 M1.568.10
      UNet11×10-396.5018.842.11 M0.573.51
    • Table 4. The parameter prediction performance of two models under different noise

      View table
      View in Article

      Table 4. The parameter prediction performance of two models under different noise

      模型

      Models

      数据集Data set信噪比SNR level / dB白噪声White noise高斯噪声Gaussian noise闪烁噪声 1/f noise
      幅度相对误差δ of amplitude时间相对误差δ of time幅度相对误差δ of amplitude时间相对误差δ of time幅度相对误差δ of amplitude时间相对误差δ of time
      UNet测试集 Test set0.573.510.573.510.573.51

      噪声测试集

      Noise test set

      1000.993.010.573.520.573.52
      801.013.020.973.730.973.69
      604.205.0010.099.358.047.92
      5010.7012.0029.1325.1723.6520.56
      4024.7621.3347.0140.5044.7539.34
      3033.5125.8448.9538.6158.1750.74
      2037.5429.8337.5329.8257.1047.15
      1064.6773.10108.45111.7353.5841.18
      CNN-LSTM测试集 Test set0.983.930.983.930.983.93

      噪声测试集

      Noise test set

      1002.2114.212.2114.212.2014.21
      802.2714.202.2714.192.2814.21
      604.3514.254.3414.245.7914.63
      5019.9417.3219.9417.3226.1519.74
      4059.7534.4059.7534.4063.1237.98
      3082.3056.0982.3056.0983.9359.77
      2092.5761.9692.5761.9593.0962.28
      1096.9759.0296.9759.0295.9362.81
    Tools

    Get Citation

    Copy Citation Text

    Lin TANG, Shuang ZHOU, Xianli LIAO, Bo LI. Application of lightweight neural network models for nuclear pulse parameter prediction[J]. NUCLEAR TECHNIQUES, 2024, 47(11): 110502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR PHYSICS, INTERDISCIPLINARY RESEARCH

    Received: Jun. 13, 2024

    Accepted: --

    Published Online: Jan. 2, 2025

    The Author Email: LI Bo (LIBo)

    DOI:10.11889/j.0253-3219.2024.hjs.47.110502

    Topics