Journal of Innovative Optical Health Sciences, Volume. 18, Issue 2, 2550001(2025)
Phototherapy and optogenetic stimulation improve cognitive function in sleep-deprived mice
[1] É. Pronier, J. F. Morici, G. Girardeau. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci., 46, 912-925(2023).
[2] Y. D. Li, Y. J. Luo, Z. K. Chen, L. Quintanilla, Y. Cherasse, L. Zhang, M. Lazarus, Z. L. Huang, J. Song. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat. Neurosci., 25, 630-645(2022).
[3] B. C. Monteiro, S. Monteiro, M. Candida, N. Adler, F. Paes, N. Rocha, A. E. Nardi, E. Murillo-Rodriguez, S. Machado. Relationship between brain-derived neurotrofic factor (Bdnf) and sleep on depression: A critical review. Clin. Pract. Epidemiol. Ment Health, 13, 213-219(2017).
[4] S. Y. Xu, B. Wan. Recent advances in low-level laser therapy on depression. Stress Brain, 2, 123-138(2022).
[5] T. A. LeGates, C. M. Altimus, H. Wang, H. K. Lee, S. Yang, H. Zhao, A. Kirkwood, E. T. Weber, S. Hattar. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 491, 594-598(2012).
[6] X. Z. Zhou, Y. He, T. Xu, Z. F. Wu, W. Guo, X. Xu, Y. T. Liu, Y. Zhang, H. P. Shang, L. B. Huang, Z. M. Yao, Z. W. Li, L. Y. Su, Z. H. Li, T. Feng, S. M. Zhang, O. Monteiro, R. A. Cunha, Z. L. Huang, K. Zhang, Y. L. Li, X. H. Cai, J. Qu, J. F. Chen. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res., 34, 214-231(2024).
[7] L. Huang, Y. Xi, Y. F. Peng, Y. Yang, X. D. Huang, Y. W. Fu, Q. Tao, J. Xiao, T. F. Yuan, K. An, H. Zhao, M. L. Pu, F. Q. Xu, T. Xue, M. M. Luo, K. F. So, C. R. Ren. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron, 102, 128-142.e8(2019).
[8] X. D. Huang, P. C. Huang, L. Huang, Z. F. Hu, X. W. Liu, J. W. Shen, Y. Xi, Y. Yang, Y. W. Fu, Q. Tao, S. Lin, A. D. Xu, F. Q. Xu, T. Xue, K. F. So, H. H. Li, C. R. Ren. A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron, 109, 347-362.e7(2021).
[9] G. L. Willis, E. J. D. Turner. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: A case series study. Chronobiol. Int., 24, 521-537(2007).
[10] Z. Z. Lv, L. X. Chen, P. Chen, H. P. Peng, Y. Rong, W. Hong, Q. Zhou, N. Li, B. X. Li, R. C. Paolicelli, Y. Zhan. Clearance of β-amyloid and synapses by the optogenetic depolarization of microglia is complement selective. Neuron, 112, 740-754.e7(2024).
[11] S. L. Jackman, B. M. Beneduce, I. R. Drew, W. G. Regehr. Achieving high-frequency optical control of synaptic transmission. J. Neurosci., 34, 7704-7714(2014).
[12] A. W. Bero, J. Meng, S. Cho, A. H. Shen, R. G. Canter, M. Ericsson, L. H. Tsai. Early remodeling of the neocortex upon episodic memory encoding. Proc. Natl. Acad. Sci. USA, 111, 11852-11857(2014).
[13] Q. Liu, L. H. Gan, J. Ni, Y. Chen, Y. L. Chen, Z. L. Huang, X. Huang, T. Q. Wen. Dcf1 improves behavior deficit in drosophila and mice caused by optogenetic suppression. J. Cell. Biochem., 118, 4210-4215(2017).
[14] S. O. Wali, K. Qutah, L. Abushanab, R. A. Basamh, J. Abushanab, A. Krayem. Effect of on-call-related sleep deprivation on physicians’ mood and alertness. Ann. Thorac. Med., 8, 22-27(2013).
[15] S. M. Rajaratnam, J. Arendt. Health in a 24-h society. Lancet, 358, 999-1005(2001).
[16] M. W. L. Chee, W. C. Choo. Functional imaging of working memory after 24hr of total sleep deprivation. J. Neurosci., 24, 4560-4567(2004).
[17] H. F. Iaccarino, A. C. Singer, A. J. Martorell, A. Rudenko, F. Gao, T. Z. Gillingham, H. Mathys, J. Seo, O. Kritskiy, F. Abdurrob, C. Adaikkan, R. G. Canter, R. Rueda, E. N. Brown, E. S. Boyden, L. H. Tsai. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540, 230-235(2016).
[18] M. Wang, C. Yan, X. Li, T. Yang, S. Wu, Q. Liu, Q. Luo, F. Zhou. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun., 15, 1453(2024).
[19] C. Zhao, D. Li, Y. Kong, H. Liu, Y. Hu, H. Niu, O. Jensen, X. Li, H. Liu, Y. Song. Transcranial photobiomodulation enhances visual working memory capacity in humans. Sci. Adv., 8, eabq3211(2022).
[20] L. Tao, Q. Liu, F. Zhang, Y. Fu, X. Zhu, X. Weng, H. Han, Y. Huang, Y. Suo, L. Chen, X. Gao, X. Wei. Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl., 10, 179(2021).
[21] D. Li, S. Liu, T. Yu, Z. Liu, S. Sun, D. Bragin, A. Shirokov, N. Navolokin, O. Bragina, Z. Hu, J. Kurths, I. Fedosov, I. Blokhina, A. Dubrovski, A. Khorovodov, A. Terskov, M. Tzoy, O. Semyachkina-Glushkovskaya, D. Zhu. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun., 14, 6104(2023).
[22] J. Luo, T. X. Phan, Y. Yang, M. G. Garelick, D. R. Storm. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: Implications for REM sleep and memory consolidation. J. Neurosci., 33, 6460-6468(2013).
[23] S. A. Tischkau, J. W. Mitchell, S. H. Tyan, G. F. Buchanan, M. U. Gillette. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem., 278, 718-723(2003).
[24] G. Vandewalle, P. Maquet, D.-J. Dijk. Light as a modulator of cognitive brain function. Trends Cognit. Sci., 13, 429-438(2009).
[25] L. Lack, H. Wright, D. L. Paynter. The treatment of sleep onset insomnia with bright morning light. Sleep Biol. Rhythms, 5, 173-179(2007).
[26] D. C. Y. Cheng, J. L. Ganner, C. J. Gordon, C. L. Phillips, R. R. Grunstein, M. Comas. The efficacy of combined bright light and melatonin therapies on sleep and circadian outcomes: A systematic review. Sleep Med. Rev., 58, 101491(2021).
[27] S. J. Kim, S. H. Lee, I. B. Suh, J. W. Jang, J. H. Jhoo, J. H. Lee. Positive effect of timed blue-enriched white light on sleep and cognition in patients with mild and moderate Alzheimer’s disease. Sci. Rep., 11, 10174(2021).
[28] W. D. S. Killgore, J. R. Vanuk, B. R. Shane, M. Weber, S. Bajaj. A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury. Neurobiol. Dis., 134, 104679(2020).
[29] W. J. Tyler, M. Alonso, C. R. Bramham, L. D. P. Miller. From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. Mem., 9, 224-237(2002).
[30] K. Yamada, M. Mizuno, T. Nabeshima. Role for brain-derived neurotrophic factor in learning and memory. Life Sci., 70, 735-744(2002).
[31] L. T. Yi, L. Luo, Y. J. Wu, B. B. Liu, X. L. Liu, D. Geng, Q. Liu. Circadian variations in behaviors, BDNF and cell proliferation in depressive mice. Metab. Brain Dis., 30, 1495-1503(2015).
[32] C. B. Meng, Z. Y. He, D. Xing. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease. J. Neurosci., 33, 13505-13517(2013).
[33] L. Fenno, O. Yizhar, K. Deisseroth. The development and application of optogenetics. Annu. Rev. Neurosci., 34, 389-412(2011).
[34] K. W. Wang, X. L. Ye, T. Huang, X. F. Yang, L. Y. Zou. Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer’s disease. Neural Regen Res., 14, 2147-2155(2019).
[35] J. Muir, J. Lopez, R. C. Bagot. Wiring the depressed brain: Optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology, 44, 1013-1026(2019).
[36] H. E. Covington, M. K. Lobo, I. Maze, V. Vialou, J. M. Hyman, S. Zaman, Q. LaPlant, E. Mouzon, S. Ghose, C. A. Tamminga, R. L. Neve, K. Deisseroth, E. J. Nestler. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci., 30, 16082-16090(2010).
[37] D. Pelluru, R. R. Konadhode, N. R. Bhat, P. J. Shiromani. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J. Neurosci., 43, 1298-1306(2016).
[38] Q. C. Zhao, M. Maci, M. R. Miller, H. Zhou, F. Zhang, M. Algamal, Y. F. Lee, S. S. Hou, S. J. Perle, H. Le, A. N. Russ, E. H. Lo, D. Gerashchenko, S. N. Gomperts, B. J. Bacskai, K. V. Kastanenka. Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer’s disease model. Mol. Neurodegener., 18, 93-93(2023).
[39] W. Danysz, C. G. Parsons. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine searching for the connections. Br. J. Pharmacol., 167, 324-352(2012).
Get Citation
Copy Citation Text
Na Li, Xuechun Li, Zhongdi Jiang, Xiafei Shi, Huancheng Wu, Yi Liu, Huijuan Yin, Hongli Chen. Phototherapy and optogenetic stimulation improve cognitive function in sleep-deprived mice[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2550001
Category: Research Articles
Received: Jul. 4, 2024
Accepted: Oct. 18, 2024
Published Online: Apr. 7, 2025
The Author Email: Hongli Chen (chenhli0107@163.com)