Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1828001(2024)

Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network

Qinfeng Yao1、*, Yongxiang Ning1, and Sunwen Du2
Author Affiliations
  • 1Department of Earth Science and Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, Shanxi, China
  • 2School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • show less
    Figures & Tables(12)
    Overall architecture of proposed method
    Dual attention mechanism of spatial channel. (a) Convolution block attention module; (b) spatial access attention module; (c) spatial attention module; (d) channel attention module
    Dataset 1. (a) Landsat-8 optical image; (b) Sentinel-1A SAR image; (c) ground truth
    Dataset 2. (a) QuickBird-2 optical image; (b) TerraSAR-X StripMap HH SAR image; (c) ground truth
    Dataset 3. (a) Sentinel-2 optical image; (b) COSMO-SkyMed SAR image; (c) ground truth
    Change detection results of dataset 1. (a) Optical image; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Change detection results of dataset 2. (a) Optical image; (b)SAR image; (c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Change detection results of dataset 3. (a) Optical images; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    • Table 1. Quantitative evaluation results for dataset 1

      View table

      Table 1. Quantitative evaluation results for dataset 1

      MethodRprecisionRrecallRmIOUsF1
      DCCN49.9249.6938.8446.31
      DHFF55.7573.4544.4154.50
      EECD73.1681.9266.8976.68
      FCSN77.2180.0268.6478.26
      DTCDN80.2982.0671.2880.67
      MSCD79.8984.2272.2581.54
      Proposed method78.8985.3872.7482.17
    • Table 2. Quantitative evaluation results for dataset 2

      View table

      Table 2. Quantitative evaluation results for dataset 2

      MethodRprecisionRrecallRmIOUsF1
      DCCN47.1343.9138.9845.02
      DHFF52.9458.1741.3751.18
      EECD89.0891.0182.3589.52
      FCSN91.9994.5487.1792.75
      DTCDN88.8395.1785.3291.57
      MSCD91.6093.3186.2492.17
      Proposed method92.0495.8888.8893.86
    • Table 3. Quantitative evaluation results for dataset 3

      View table

      Table 3. Quantitative evaluation results for dataset 3

      MethodRprecisionRrecallRmIOUsF1
      DCCN50.1450.1140.5750.01
      DHFF48.2147.0736.5347.62
      EECD61.656.5948.6557.71
      FCSN61.5958.2448.8557.74
      DTCDN67.4265.3654.9266.29
      MSCD68.6774.2457.4370.01
      Proposed method71.5171.9159.9171.71
    • Table 4. Comparison of training time and prediction time

      View table

      Table 4. Comparison of training time and prediction time

      MethodTraining timePrediction time
      EECD5.980.065
      FCSN7.120.037
      DTCDN266.150.218
      MSCD35.820.061
      Proposed method26.190.058
    Tools

    Get Citation

    Copy Citation Text

    Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 27, 2023

    Accepted: Jan. 26, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Qinfeng Yao (yx20231123@163.com)

    DOI:10.3788/LOP232565

    CSTR:32186.14.LOP232565

    Topics