Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2430006(2025)
Super-resolution microscopy: Shedding new light on blood cell imaging
[1] A. Ukidve, Z. Zhao, A. Fehnel, V. Krishnan, D. C. Pan, Y. Gao, A. Mandal, V. Muzykantov, S. Mitragotri. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc. Natl. Acad. Sci. USA, 117, 17727-17736(2020).
[2] S. Li, Z. Lu, S. Wu, T. Chu, B. Li, F. Qi, Y. Zhao, G. Nie. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat. Rev. Cancer., 24, 72-87(2024).
[3] G. L. Burn, A. Foti, G. Marsman, D. F. Patel, A. Zychlinsky. The neutrophil. Immunity, 54, 1377-1391(2021).
[4] T. Gaber, Y. Chen, P.-L. Krauß, F. Buttgereit. Metabolism of T lymphocytes in health and disease. Int. Rev. Cell Mol. Biol., 342, 95-148(2019).
[5] B. Chazaud. Macrophages: Supportive cells for tissue repair and regeneration. Immunobiology, 219, 172-178(2014).
[6] Z. Tian, Y. Wei, Y. Yu, F. Zhou, Z.-L. Huang. Blood cell analysis: From traditional methods to super-resolution microscopy. Photonics, 9, 261(2022).
[7] J. Y. Vis, A. Huisman. Verification and quality control of routine hematology analyzers. Int. J. Lab. Hematol., 38, 100-109(2016).
[8] S. Stavrakis, G. Holzner, J. Choo, A. DeMello. High-throughput microfluidic imaging flow cytometry. Curr. Opin. Biotechnol., 55, 36-43(2019).
[9] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).
[10] Y. Yu, J. Yu, Z.-L. Huang, F. Zhou. Application of super-resolution fluorescence microscopy in hematologic malignancies. J. Innov. Opt. Health Sci., 15, 2230005(2022).
[11] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwart, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[12] G. H. Patterson, J. Lippincott-Schwartz. A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873-1877(2002).
[13] D. Pan, Z. Hu, F. Qiu, Z. L. Huang, Y. Ma, Y. Wang, L. Qin, Z. Zhang, S. Zen, Y. H. Zhang. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat. Commun., 5, 5573(2014).
[14] S. N. Uno, M. Kamiya, T. Yoshihara, K. Sugawara, K. Okabe, M. C. Tarhan, H. Fujita, T. Funatsu, Y. Okada, S. Tobita, Y. Urano. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat. Chem., 6, 681-689(2014).
[15] C. Bond, A. N. Santiago-Ruiz, Q. Tang, M. Lakadamyali. Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell, 82, 315-332(2022).
[16] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 18, 685-701(2017).
[17] Y. Sun, L. Yin, M. Cai, H. Wu, X. Hao, C. Kuang, X. Liu. Modulated illumination localization microscopy-enabled sub-10 nm resolution. J. Innov. Opt. Health Sci., 15, 2230004(2022).
[18] F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, E. B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. Jacobs-Wagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, J. Bewersdorf. Ultra-high resolution 3D imaging of whole cells. Cell, 166, 1028-1040(2016).
[19] L. M. Ostersehlt, D. C. Jans, A. Wittek, J. Keller-Findeisen, K. Inamdar, S. J. Sahl, S. W. Hell, S. Jakobs. DNA-PAINT MINFLUX nanoscopy. Nat. Methods, 19, 1072-1075(2022).
[20] J. Liao, J. Qu, Y. Ha, J. Li. Deep-learning-based methods for super-resolution fluorescence microscopy. J. Innov. Opt. Health Sci., 16, 2230016(2023).
[21] W. Ouyang, A. Aristov, M. Lelek, X. Hao, C. Zimmer. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460-468(2018).
[22] S. Fu, W. Shi, T. Luo, Y. He, L. Zhou, J. Yang, Z. Yang, J. Liu, X. Liu, Z. Guo, C. Yang, C. Liu, Z. L. Huang, J. Ries, M. Zhang, P. Xi, D. Jin, Y. Li. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging. Nat. Methods, 20, 459-468(2023).
[23] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).
[24] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 97, 8206-8210(2000).
[25] K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).
[26] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).
[27] L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. Gustafsson, H. Leonhardt, J. W. Sedat. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332-1336(2008).
[28] W. Zhao, S. Zhao, L. Li, X. Huang, S. Xing, Y. Zhang, G. Qiu, Z. Han, Y. Shang, D. E. Sun, C. Shan, R. Wu, L. Gu, S. Zhang, R. Chen, J. Xiao, Y. Mo, J. Wang, W. Ji, X. Chen, B. Ding, Y. Liu, H. Mao, B. L. Song, J. Tan, J. Liu, H. Li, L. Chen. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 40, 606-617(2022).
[29] D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A., Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, E. Betzig. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).
[30] Y. Guo, D. Li, S. Zhang, Y. Yang, J. J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430-1442.e17(2018).
[31] D. Li, Y. G. Zhao, D. Li, H. Zhao, J. Huang, G. Miao, D. Feng, P. Liu, D. Li, H. Zhang. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell Rep., 27, 343-358.e345(2019).
[32] F. Chen, P. W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543-548(2015).
[33] G. Wen, V. Leen, T. Rohand, M. Sauer, J. Hofkens. Current progress in expansion microscopy: Chemical strategies and applications. Chem. Rev., 123, 3299-3323(2023).
[34] R. Chen, X. Cheng, Y. Zhang, X. Yang, Y. Wang, X. Liu, S. Zeng. Expansion tomography for large volume tissue imaging with nanoscale resolution. Biomed. Opt. Express, 12, 5614-5628(2021).
[35] S. Truckenbrodt, C. Sommer, S. O. Rizzoli, J. G. Danzl. A practical guide to optimization in X10 expansion microscopy. Nat. Protoc., 14, 832-863(2019).
[36] H. G. J. Damstra, B. Mohar, M. Eddison, A. Akhmanova, L. C. Kapitein, P. W. Tillberg. Visualizing cellular and tissue ultrastructure using ten-fold robust expansion microscopy (TREx). Elife, 11, e73775(2022).
[37] J. B. Chang, F. Chen, Y. G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H. J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai, E. S. Boyden. Iterative expansion microscopy. Nat. Methods, 14, 593-599(2017).
[38] A. Klimas, B. R. Gallagher, P. Wijesekara, S. Fekir, E. F. DiBernardo, Z. Cheng, D. B. Stolz, F. Cambi, S. C. Watkins, S. L. Brody, A. Horani, A. L. Barth, C. I. Moore, X. Ren, Y. Zhao. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat. Biotechnol., 41, 858-869(2023).
[39] L. Rodermund, H. Coker, R. Oldenkamp, G. Wei, J. Bowness, B. Rajkumar, T. Nesterova, D. M. Susano Pinto, L. Schermelleh, N. Brockdorff. Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. Science, 372, eabe7500(2021).
[40] J. C. Volz, A. Yap, X. Sisquella, J. K. Thompson, N. T. Lim, L. W. Whitehead, L. Chen, M. Lampe, W.-H. Tham, D. Wilson. Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. Cell Host Microbe, 20, 60-71(2016).
[41] J. Baum, D. Richard, D. T. Riglar. Malaria parasite invasion: Achieving superb resolution. Cell Host Microbe, 21, 294-296(2017).
[42] D. T. Riglar, D. Richard, D. W. Wilson, M. J. Boyle, C. Dekiwadia, L. Turnbull, F. Angrisano, D. S. Marapana, K. L. Rogers, C. B. Whitchurch. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe, 9, 9-20(2011).
[43] J.-G. Schloetel, J. Heine, A. F. Cowman, M. Pasternak. Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Sci. Rep., 9, 4674(2019).
[44] A.-K. Mehnert, C. S. Simon, J. Guizetti. Immunofluorescence staining protocol for STED nanoscopy of Plasmodium-infected red blood cells. Mol. Biochem. Parasitol., 229, 47-52(2019).
[45] C. P. Sanchez, C. Karathanasis, R. Sanchez, M. Cyrklaff, J. Jäger, B. Buchholz, U. S. Schwarz, M. Heilemann, M. Lanzer. Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes. Commun. Biol., 2, 172(2019).
[46] C. P. Sanchez, P. Patra, S. Y. S. Chang, C. Karathanasis, L. Hanebutte, N. Kilian, M. Cyrklaff, M. Heilemann, U. S. Schwarz, M. Kudryashev. KAHRP dynamically relocalizes to remodeled actin junctions and associates with knob spirals in Plasmodium falciparum-infected erythrocytes. Mol. Microbiol., 117, 274-292(2022).
[47] J. Kehrer, E. Pietsch, J. Heinze, T. Spielmann, F. Frischknecht. Clearing of hemozoin crystals in malaria parasites enables whole-cell STED microscopy. J. Cell Sci., 136, jcs260399(2023).
[48] F. Xing, F. Hu, J. Yang, L. Pan, J. Xu. Structural and functional studies of erythrocyte membrane-skeleton by single-cell and single-molecule techniques. J. Innov. Opt. Health Sci., 12, 1830004(2019).
[49] L. Pan, R. Yan, W. Li, K. Xu. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep., 22, 1151-1158(2018).
[50] M. Hou, F. Xing, J. Yang, F. Hu, L. Pan, J. Xu. Molecular resolution mapping of erythrocyte cytoskeleton by ultrastructure expansion single-molecule localization microscopy. Small Methods, 7, 2201243(2023).
[51] G. Vaisey, P. Banerjee, A. J. North, C. A. Haselwandter, R. MacKinnon. Piezo1 as a force-through-membrane sensor in red blood cells. Elife., 11, e82621(2022).
[52] G. Zhao, H. Li, J. Gao, M. Cai, H. Xu, Y. Shi, H. Wang, H. Wang. Insight into the different channel proteins of human red blood cell membranes revealed by combined dSTORM and AFM techniques. Anal. Chem., 93, 14113-14120(2021).
[53] F. Wang, Y. H. Liu, T. Zhang, J. Gao, Y. Xu, G. Y. Xie, W. J. Zhao, H. Wang, Y. G. Yang. Aging-associated changes in CD47 arrangement and interaction with thrombospondin-1 on red blood cells visualized by super-resolution imaging. Aging Cell., 19, e13224(2020).
[54] A. Zelená, J. Blumberg, D. Probst, R. Gerasimaitė, G. Lukinavičius, U. S. Schwarz, S. Köster. Force generation in human blood platelets by filamentous actomyosin structures. Biophys. J., 122, 3340-3353(2023).
[55] S. Go, D. Jeong, J. Chung, G.-h. Kim, J. Song, E. Moon, Y. H. Huh, D. Kim. Super-resolution imaging reveals cytoskeleton-dependent organelle rearrangement within platelets at intermediate stages of maturation. Structure, 29, 810-822.e3(2021).
[56] J. Kamykowski, P. Carlton, S. Sehgal, B. Storrie. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood, 118, 1370-1373(2011).
[57] I. D. Pokrovskaya, S. Yadav, A. Rao, E. McBride, J. A. Kamykowski, G. Zhang, M. A. Aronova, R. D. Leapman, B. Storrie. 3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res. Pract. Thromb. Haemost., 4, 72-85(2020).
[58] Y. Okamura, R. Schmidt, I. Raschke, M. Hintze, S. Takeoka, A. Egner, T. Lang. A few immobilized thrombins are sufficient for platelet spreading. Biophys. J., 100, 1855-1863(2011).
[59] D. Rönnlund, Y. Yang, H. Blom, G. Auer, J. Widengren. Fluorescence nanoscopy of platelets resolves platelet-state specific storage, release and uptake of proteins, opening up future diagnostic applications. Adv. Healthc. Mater., 1, 707-713(2012).
[60] D. Ronnlund, L. Xu, A. Perols, A. K. Gad, A. Eriksson Karlstro¨m, G. Auer, J. Widengren. Multicolor fluorescence nanoscopy by photobleaching: Concept, verification, and its application to resolve selective storage of proteins in platelets. ACS Nano, 8, 4358-4365(2014).
[61] J. E. Aslan, R. A. Rigg, M. S. Nowak, C. P. Loren, S. M. Baker-Groberg, J. Pang, L. L. David, O. J. McCarty. Lysine acetyltransfer supports platelet function. J. Thromb. Haemost., 13, 1908-1917(2015).
[62] A. E. Urban, E. O. Quick, K. P. Miller, J. Krcmery, H.-G. Simon. Pdlim7 regulates Arf6-dependent actin dynamics and is required for platelet-mediated thrombosis in mice. PLoS One, 11, e0164042(2016).
[63] H. L. Green, M. Zuidscherwoude, F. Alenazy, C. W. Smith, M. Bender, S. G. Thomas. SMIFH2 inhibition of platelets demonstrates a critical role for formin proteins in platelet cytoskeletal dynamics. J. Thromb. Haemost., 18, 955-967(2020).
[64] M. Swinkels, S. Hordijk, P. E. Bürgisser, J. A. Slotman, T. Carter, F. W. Leebeek, A. G. Jansen, J. Voorberg, R. Bierings. Quantitative super-resolution imaging of platelet degranulation reveals differential release of von Willebrand factor and von Willebrand factor propeptide from α-granules. J. Thromb. Haemost., 21, 1967-1980(2023).
[65] E. J. Haining, A. L. Matthews, P. J. Noy, H. M. Romanska, H. J. Harris, J. Pike, M. Morowski, R. L. Gavin, J. Yang, P.-E. Milhiet. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets, 28, 629-642(2017).
[66] J. Chung, D. Jeong, G.-h. Kim, S. Go, J. Song, E. Moon, Y. H. Huh, D. Kim. Super-resolution imaging of platelet-activation process and its quantitative analysis. Sci. Rep., 11, 10511(2021).
[67] H. S. Heil, M. Aigner, S. Maier, P. Gupta, L. M. Evers, V. Göb, C. Kusch, M. Meub, B. Nieswandt, D. Stegner. Mapping densely packed αIIb β3 receptors in murine blood platelets with expansion microscopy. Platelets, 33, 849-858(2022).
[68] R. A. Neagoe, D. Stegner, S. Watson, N. Poulter, K. Heinze, B. Nieswand. The advantages of using expansion microscopy to visualise single platelets and aggregates. Br. J. Haematol., 197, 151-151(2022).
[69] X. Han, P. Li, Z. Yang, X. Huang, G. Wei, Y. Sun, X. Kang, X. Hu, Q. Deng, L. Chen. Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules. Nat. Commun., 8, 14639(2017).
[70] E. O. Agbani, C. M. Williams, Y. Li, M. T. van den Bosch, S. F. Moore, A. Mauroux, L. Hodgson, A. S. Verkman, I. Hers, A. W. Poole. Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis. JCI Insight, 3, e99062(2018).
[71] E. Grambow, F. Mueller-Graf, E. Delyagina, M. Frank, A. Kuhla, B. Vollmar. Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platelets, 25, 166-174(2014).
[72] M. Y. Mollica, K. M. Beussman, A. Kandasamy, L. M. Rodríguez, F. R. Morales, J. Chen, K. Manohar, J. C. Del Álamo, J. A. López, W. E. Thomas. Distinct platelet F-actin patterns and traction forces on von Willebrand factor versus fibrinogen. Biophys. J., 122, 3738-3748(2023).
[73] B. Yang, X. Wang, X. Hu, Y. Xiao, X. Xu, X. Yu, M. Wang, H. Luo, J. Li, Y. Ma, W. Shen. Platelet morphology, ultrastructure and function changes in acute ischemic stroke patients based on structured illumination microscopy. Heliyon, 9, e18543(2023).
[74] N. S. Poulter, A. Y. Pollitt, A. Davies, D. Malinova, G. B. Nash, M. J. Hannon, Z. Pikramenou, J. Z. Rappoport, J. H. Hartwig, D. M. Owen. Platelet actin nodules are podosome-like structures dependent on Wiskott–Aldrich syndrome protein and ARP2/3 complex. Nat. Commun., 6, 7254(2015).
[75] D. Westmoreland, M. Shaw, W. Grimes, D. J. Metcalf, J. J. Burden, K. Gomez, A. E. Knight, D. F. Cutler. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J. Thromb. Haemost., 14, 839-849(2016).
[76] M. Swinkels, J. A. Slotman, F. W. Leebeek, J. Voorberg, R. Bierings, G. Jansen. Super-resolution immunofluorescence imaging of platelet granules. Blood, 134, 3613(2019).
[77] M. Swinkels, F. Atiq, P. E. Bürgisser, J. A. Slotman, A. B. Houtsmuller, C. de Heus, J. Klumperman, F. W. Leebeek, J. Voorberg, A. J. G. Jansen. Quantitative 3D microscopy highlights altered von Willebrand factor α-granule storage in patients with von Willebrand disease with distinct pathogenic mechanisms. Res. Pract. Thromb. Haemost., 5, e12595(2021).
[78] J. Bergstrand, L. Xu, X. Miao, N. Li, O. Öktem, B. Franzén, G. Auer, M. Lomnytska, J. Widengren. Super-resolution microscopy can identify specific protein distribution patterns in platelets incubated with cancer cells. Nanoscale, 11, 10023-10033(2019).
[79] J. Bergstrand, X. Miao, C. V. Srambickal, G. Auer, J. Widengren. Fast, streamlined fluorescence nanoscopy resolves rearrangements of SNARE and cargo proteins in platelets co-incubated with cancer cells. J. Nanobiotechnol., 20, 292(2022).
[80] P. Xu, H. Deng, Z. Hong, S. Zhong, F. Chen, L. Wang, Z. Wang, Y. Mei, Z. Luo, Z. He, H. Li, C. Gan, H. Zhang, Y. Ma, Z. Han, Y.-H. Zhang. Superresolution fluorescence microscopy of platelet subcellular structures as a potential tumor liquid biopsy. Small Methods, 7, 2300445(2023).
[81] A. Y. Pollitt, N. S. Poulter, E. Gitz, L. Navarro-Nunez, Y.-J. Wang, C. E. Hughes, S. G. Thomas, B. Nieswandt, M. R. Douglas, D. M. Owen. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J. Biol. Chem., 289, 35695-35710(2014).
[82] V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, A. Zychlinsky. Neutrophil extracellular traps kill bacteria. Science, 303, 1532-1535(2004).
[83] E. Neubert, D. Meyer, F. Rocca, G. Günay, A. Kwaczala-Tessmann, J. Grandke, S. Senger-Sander, C. Geisler, A. Egner, M. P. Schön. Chromatin swelling drives neutrophil extracellular trap release. Nat. Commun., 9, 3767(2018).
[84] Y. P. Zhu, M. Speir, Z. Tan, J. C. Lee, C. J. Nowell, A. A. Chen, H. Amatullah, A. J. Salinger, C. J. Huang, G. Wu. NET formation is a default epigenetic program controlled by PAD4 in apoptotic neutrophils. Sci. Adv., 9, eadj1397(2023).
[85] A. Navrátilová, V. Bečvář, H. Hulejová, M. Tomčík, L. Štolová, H. Mann, O. Růžičková, O. Šléglová, J. Závada, K. Pavelka. New pro-inflammatory cytokine IL-40 is produced by activated neutrophils and plays a role in the early stages of seropositive rheumatoid arthritis. RMD Open, 9, e002894(2023).
[86] J. S. Holsapple, L. Schnitzler, L. Rusch, T. H. Baldeweg, E. Neubert, S. Kruss, L. Erpenbeck. Expansion microscopy of neutrophil nuclear structure and extracellular traps. Biophys. Rep., 3, 100091(2022).
[87] A. M. Stehr, G. Wang, R. Demmler, M. P. Stemmler, J. Krug, P. Tripal, B. Schmid, C. I. Geppert, A. Hartmann, L. E. Muñoz. Neutrophil extracellular traps drive epithelial–mesenchymal transition of human colon cancer. J. Pathol., 256, 455-467(2022).
[88] M. Ramadass, J. L. Johnson, A. Marki, J. Zhang, D. Wolf, W. B. Kiosses, K. Pestonjamasp, K. Ley, S. D. Catz. The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration. J. Leukoc. Biol., 105, 1209-1224(2019).
[89] J. L. Johnson, E. Meneses-Salas, M. Ramadass, J. Monfregola, F. Rahman, R. Carvalho Gontijo, W. B. Kiosses, K. Pestonjamasp, D. Allen, J. Zhang. Differential dysregulation of granule subsets in WASH-deficient neutrophil leukocytes resulting in inflammation. Nat. Commun., 13, 5529(2022).
[90] M. Pruenster, R. Immler, J. Roth, T. Kuchler, T. Bromberger, M. Napoli, K. Nussbaumer, I. Rohwedder, L. M. Wackerbarth, C. Piantoni. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat. Immunol., 24, 2021-2031(2023).
[91] C. Iking-Konert, C. Cseko, C. Wagner, S. Stegmaier, K. Andrassy, G. M. Hansch(Berl. Transdifferentiation of polymorphonuclear neutrophils: Acquisition of CD83 and other functional characteristics of dendritic cells. J. Mol. Med., 79, 464-474(2001).
[92] T. N. Mayadas, X. Cullere, C. A. Lowell. The multifaceted functions of neutrophils. Annu. Rev. Pathol., 9, 181-218(2014).
[93] E. Balta, J. Stopp, L. Castelletti, H. Kirchgessner, Y. Samstag, G. H. Wabnitz. Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy. Methods, 112, 25-38(2017).
[94] R. F. W. Hawkins, A. Patenaude, A. Dumas, R. Jain, Y. Tesfagiorgis, S. Kerfoot, T. Matsui, M. Gunzer, P. E. Poubelle, C. Larochelle. ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis. JCI Insight, 2, e96882(2017).
[95] S. L. Silva-Del Toro, L.-A. H. Allen. Microtubules and dynein regulate human neutrophil nuclear volume and hypersegmentation during H. pylori infection. Front. Immunol., 12, 653100(2021).
[96] Z. Fan, W. B. Kiosses, H. Sun, M. Orecchioni, Y. Ghosheh, D. M. Zajonc, M. A. Arnaout, E. Gutierrez, A. Groisman, M. H. Ginsberg. High-affinity bent β2-integrin molecules in arresting neutrophils face each other through binding to ICAMs in cis. Cell Rep., 26, 119-130.e5(2019).
[97] R. M. Brunetti, G. Kockelkoren, P. Raghavan, G. R. R. Bell, D. Britain, N. Puri, S. R. Collins, M. D. Leonetti, D. Stamou, O. D. Weiner. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J. Cell Biol., 221, e202104046(2022).
[98] M. Karmakar, M. Minns, E. N. Greenberg, J. Diaz-Aponte, K. Pestonjamasp, J. L. Johnson, J. K. Rathkey, D. W. Abbott, K. Wang, F. Shao, S. D. Catz, G. R. Dubyak, E. Pearlman. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun., 11, 2212(2020).
[99] A. C. Brown, S. Oddos, I. M. Dobbie, J.-M. Alakoskela, R. M. Parton, P. Eissmann, M. A. Neil, C. Dunsby, P. M. French, I. Davis. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol., 9, e1001152(2011).
[100] P. Chitirala, H.-F. Chang, P. Martzloff, C. Harenberg, K. Ravichandran, M. H. Abdulreda, P.-O. Berggren, E. Krause, C. Schirra, T. Leinders-Zufall. Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. Elife, 9, e58065(2020).
[101] M. Sleiman, D. R. Stevens, P. Chitirala, J. Rettig. Cytotoxic granule trafficking and fusion in synaptotagmin7-deficient cytotoxic T lymphocytes. Front. Immunol., 11, 542575(2020).
[102] C. Sathitruangsak, C. H. Righolt, L. Klewes, P. Tammur, T. Ilus, A. Tamm, M. Punab, A. Olujohungbe, S. Mai. Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance. J. Cell Biochem., 116, 704-710(2015).
[103] J. M. Hartley, R. Zhang, M. Gudheti, J. Yang, J. Kopeček. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. J. Control. Release., 231, 50-59(2016).
[104] S. V. Pageon, S.-P. Cordoba, D. M. Owen, S. M. Rothery, A. Oszmiana, D. M. Davis. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D. Sci. Signal., 6, ra62(2013).
[105] P. R. Kennedy, C. Barthen, D. J. Williamson, W. T. Pitkeathly, K. S. Hazime, J. Cumming, K. B. Stacey, H. G. Hilton, M. Carrington, P. Parham. Genetic diversity affects the nanoscale membrane organization and signaling of natural killer cell receptors. Sci. Signal., 12, eaaw9252(2019).
[106] R. Götz. Super-resolution microscopy of plasma membrane receptors and intracellular pathogens. Doctoral thesis, Julius-Maximilians-Universität Würzburg(2020).
[107] J. H. Felce, L. Parolini, E. Sezgin, P. F. Céspedes, K. Korobchevskaya, M. Jones, Y. Peng, T. Dong, M. Fritzsche, D. Aarts. Single-molecule, super-resolution, and functional analysis of G protein-coupled receptor behavior within the T cell immunological synapse. Front. Cell Dev. Biol., 8, 608484(2021).
[108] H.-F. Chang, C. Schirra, M. Ninov, U. Hahn, K. Ravichandran, E. Krause, U. Becherer, Š. Bálint, M. Harkiolaki, H. Urlaub. Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nat. Commun., 13, 1029(2022).
[109] A. D. Roberts, T. M. Davenport, A. M. Dickey, R. Ahn, K. A. Sochacki, J. W. Taraska. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol. Biol. Cell, 31, 2826-2840(2020).
[110] C. G. Ziegler, J. Kim, K. Piersanti, A. Oyler-Yaniv, K. V. Argyropoulos, M. R. van den Brink, M. L. Palomba, N. Altan-Bonnet, G. Altan-Bonnet. Constitutive activation of the B cell receptor underlies dysfunctional signaling in chronic lymphocytic leukemia. Cell. Rep., 28, 923-937.e3(2019).
[111] M. Sampietro, M. Zamai, A. Díaz Torres, V. Labrador Cantarero, F. Barbaglio, L. Scarfò, C. Scielzo, V. R. Caiolfa. 3D-STED super-resolution microscopy reveals distinct nanoscale organization of the hematopoietic cell-specific lyn substrate-1 (HS1) in normal and leukemic B cells. Front. Cell Dev. Biol., 9, 655773(2021).
[112] M. Sampietro, V. Cassina, D. Salerno, F. Barbaglio, E. Buglione, C. A. Marrano, R. Campanile, L. Scarfò, D. Biedenweg, B. Fregin. The nanomechanical properties of CLL cells are linked to the actin cytoskeleton and are a potential target of BTK inhibitors. Hemasphere, 7, e931(2023).
[113] N. Trinks, S. Reinhard, M. Drobny, L. Heilig, J. Löffler, M. Sauer, U. Terpitz. Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy. Commun. Biol., 4, 1151(2021).
[114] F. Hu, D. Zhu, H. Dong, P. Zhang, F. Xing, W. Li, R. Yan, J. Zhou, K. Xu, L. Pan. Super-resolution microscopy reveals nanoscale architecture and regulation of podosome clusters in primary macrophages. iScience, 25, 105514(2022).
[115] Y. Mo, K. Wang, L. Li, S. Xing, S. Ye, J. Wen, X. Duan, Z. Luo, W. Gou, T. Chen. Quantitative structured illumination microscopy via a physical model-based background filtering algorithm reveals actin dynamics. Nat. Commun., 14, 3089(2023).
[116] S. Fumagalli, F. Fiordaliso, C. Perego, A. Corbelli, A. Mariani, M. De Paola, M.-G. De Simoni. The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy. J. Neuroinflammation, 16, 1-14(2019).
[117] Y. Li, Y. He, K. Miao, Y. Zheng, C. Deng, T.-M. Liu. Imaging of macrophage mitochondria dynamics in vivo reveals cellular activation phenotype for diagnosis. Theranostics, 10, 2897(2020).
[118] B. Yusuf, I. Mukovozov, S. Patel, Y.-W. Huang, G. Y. Liu, E. C. Reddy, M. Skrtic, M. Glogauer, L. A. Robinson. The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Sci. Rep., 11, 3614(2021).
[119] S. Dechantsreiter, A. R. Ambrose, J. D. Worboys, J. M. Lim, S. Liu, R. Shah, M. A. Montero, A. M. Quinn, T. Hussell, G. M. Tannahill. Heterogeneity in extracellular vesicle secretion by single human macrophages revealed by super-resolution microscopy. J. Extracell. Vesicles, 11, e12215(2022).
[120] Y. Wei, M. Zhao, T. He, N. Chen, L. Rao, L. Chen, Y. Zhang, Y. Yang, Q. Yuan. Quantitatively lighting up the spatial organization of CD47/SIRPα immune checkpoints on the cellular membrane with single-molecule localization microscopy. ACS Nano, 17, 21626-21638(2023).
[121] D. A. Bejarano, K. Peng, V. Laketa, K. Börner, K. L. Jost, B. Lucic, B. Glass, M. Lusic, B. Müller, H.-G. Kräusslich. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. Elife, 8, e41800(2019).
[122] W. Liu, M. Molnar, C. Garnham, H. Benav, H. Rask-Andersen. Macrophages in the human cochlea: Saviors or predators-a study using super-resolution immunohistochemistry. Front. Immunol., 9, 223(2018).
[123] C. Kämpfe Nordström, N. Danckwardt-Lillieström, G. Laurell, W. Liu, H. Rask-Andersen. The human endolymphatic sac and inner ear immunity: Macrophage interaction and molecular expression. Front. Immunol., 9, 3181(2019).
Get Citation
Copy Citation Text
Huan Deng, Yan Ma, Yu-Hui Zhang. Super-resolution microscopy: Shedding new light on blood cell imaging[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2430006
Category: Research Articles
Received: Jun. 17, 2024
Accepted: Jul. 25, 2024
Published Online: Feb. 21, 2025
The Author Email: Yu-Hui Zhang (zhangyh@mail.hust.edu.cn)