Acta Optica Sinica, Volume. 42, Issue 5, 0530002(2022)

Identification Method of Planktonic Algae Community Based on Multi-Task Convolutional Neural Network

Zhao Cheng1,2,3, Nanjing Zhao1,3、*, Gaofang Yin1,3, Xiaoling Zhang4, and Xiang Wang1,2,3
Author Affiliations
  • 1Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3Key Laboratory of Environmental Optical Monitoring Technology of Anhui Province, Hefei, Anhui 230031, China
  • 4Anhui University, Hefei, Anhui 230601, China
  • show less
    Figures & Tables(12)
    Discrete three-dimensional fluorescence spectra of different algae. (a) Microcystis aeruginosa;(b) Scenedesmus obliquus;(c) Nitzschia sp.; (d) Peridinium umbonatum var.inaequale; (e) Cryptomonas obovata.; (f) Microcystis aeruginosa+Scenedesmus obliquus; (g) Scenedesmus obliquus+Peridinium umbonatum var.inaequale; (h) Nitzschia sp.+Peridinium umbonatum var.inaequale+Cryptomonas obovata.; (i) Microcystis aeruginosa+Scenedesmus obliquus+Nitzschia sp.+Peridinium umbonatum var.inaequale; (j) Microcystis aeruginosa+Scenedesmus obliquus+Nitzschia sp.+Peridinium umbonatum var.inaequale+Cryptomonas obovata.
    Structural diagram of TextCNN
    Rloss of training results of algal classification
    Rloss of regression training by TextCNN model
    Rloss of training by PlainCNN-MT model
    • Table 1. Experimental algae

      View table

      Table 1. Experimental algae

      PhylumAlga
      CyanophytaMicrocystis aeruginosa
      ChlorophytaScenedesmus obliquus
      BacillariophytaNitzschia sp.
      PyrroptataPeridinium umbonatum var.inaequale
      CryptophytaCryptomonas obovata.
    • Table 2. Concentrations of algal samples in verification setunit:μg·L-1

      View table

      Table 2. Concentrations of algal samples in verification setunit:μg·L-1

      No.Microcystis aeruginosaScenedesmus obliquusNitzschia sp.Peridinium umbonatumvar.inaequaleCryptomonasobovata.
      125.980000
      2032.16000
      346.9300010.68
      4027.3610.4200
      50008.7755.26
      6050.9106.580
      717.290040.250
      834.1799.05028.30
      9046.93054.0647.92
      1047.52074.1834.690
      1138.25063.73033.97
      1234.1562.430022.66
      1326.1971.3287.6469.270
      14096.5884.0659.1138.64
      1542.94126.1383.8560.710
      1635.64089.3750.7446.37
      1764.7896.5343.08040.27
      1848.4176.5353.1979.6421.05
      1933.9580.2674.8346.1965.72
      2036.0597.2446.5220.470
    • Table 3. Results of classification models

      View table

      Table 3. Results of classification models

      SampleSample numberAccuracy of TextCNN /%Accuracy of PlainCNN /%
      Pure2100.00100.00
      Two mixed5100.00100.00
      Three mixed5100.00100.00
      Four mixed666.6683.33
      Five mixed250.0050.00
      Average85.0090.00
    • Table 4. Regression analysis results by TextCNN model

      View table

      Table 4. Regression analysis results by TextCNN model

      No.Concentration of Microcystisaeruginosa /(μg·L-1)Concentration of Scenedesmusobliquus /(μg·L-1)Concentration of Nitzschia sp. /(μg·L-1)Concentration of Peridinium umbonatumvar.inaequale /(μg·L-1)Concentration of Cryptomonasobovata. /(μg·L-1)RMSE
      124.1400000.008
      2034.24000
      341.6200011.83
      4025.9712.5300
      50009.5752.490.027
      6047.1806.140
      716.290037.320
      837.2695.35026.530
      9042.81059.4749.27
      1051.24078.2633.1900.059
      1140.72066.41030.67
      1232.3860.340019.55
      1323.1472.4285.4972.960
      14096.0582.3155.8341.28
      1545.03122.6486.2757.4600.084
      1639.14093.1448.1541.96
      1759.4891.5740.74044.35
      1844.1773.6456.3982.6318.27
      1930.7683.1671.2542.1769.430.130
      2039.59101.7642.6123.1737.24
      Average0.062
    • Table 5. Regression analysis results by PlainCNN model

      View table

      Table 5. Regression analysis results by PlainCNN model

      No.Concentration of Microcystisaeruginosa /(μg·L-1)Concentration of Scenedesmusobliquus /(μg·L-1)Concentration of Nitzschia sp. /(μg·L-1)Concentration of Peridinium umbonatumvar.inaequale /(μg·L-1)Concentration of Cryptomonasobovata. /(μg·L-1)RMSE
      123.6900000.007
      2030.58000
      350.370009.65
      4029.839.3700
      50009.3557.280.017
      6053.0506.740
      718.630043.690
      836.2894.28030.160
      9048.39050.8445.27
      1043.16072.5137.5700.049
      1139.14059.14031.05
      1232.0764.120024.71
      1330.1969.0784.3867.180
      14093.0581.5463.7440.32
      1545.23130.2680.9261.2500.077
      1633.94092.6554.2950.82
      1759.8298.3543.83037.48
      1844.8773.8456.8783.4625.19
      1937.1677.3178.4943.8161.150.109
      2032.86101.2749.1523.0732.58
      Average0.052
    • Table 6. Results of classification training by PlainCNN-MT model

      View table

      Table 6. Results of classification training by PlainCNN-MT model

      SampleSample numberAccuracy /%
      Pure2100
      Two mixed5100
      Three mixed5100
      Four mixed6100
      Five mixed250
      Average95
    • Table 7. Analysis results by PlainCNN-MT model

      View table

      Table 7. Analysis results by PlainCNN-MT model

      No.Concentration of Microcystisaeruginosa /(μg·L-1)Concentration of Scenedesmusobliquus /(μg·L-1)Concentration of Nitzschia sp. /(μg·L-1)Concentration of Peridinium umbonatumvar.inaequale /(μg·L-1)Concentration of Cryptomonasobovata. /(μg·L-1)RMSE
      127.5100000.004
      2033.57000
      349.150009.84
      4029.169.2800
      50008.4154.780.009
      6052.6706.370
      715.820042.690
      833.64102.6026.170
      9043.59052.3951.39
      1051.49076.5232.1500.036
      1139.57060.67035.02
      1235.8964.180021.64
      1328.973.2285.4972.480
      14099.4779.3662.5336.87
      1540.63121.5385.1159.4700.064
      1637.39092.0153.949.53
      1760.2998.1342.58042.71
      1845.3173.8550.3782.7824.69
      1936.8677.2577.4148.9463.870.080
      2033.2594.2843.2817.9434.17
      Average0.039
    Tools

    Get Citation

    Copy Citation Text

    Zhao Cheng, Nanjing Zhao, Gaofang Yin, Xiaoling Zhang, Xiang Wang. Identification Method of Planktonic Algae Community Based on Multi-Task Convolutional Neural Network[J]. Acta Optica Sinica, 2022, 42(5): 0530002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jul. 21, 2021

    Accepted: Sep. 23, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Nanjing Zhao (njzhao@aiofm.ac.cn)

    DOI:10.3788/AOS202242.0530002

    Topics