Infrared and Laser Engineering, Volume. 50, Issue 12, 20210717(2021)

Terahertz single-pixel computational imaging: Principles and applications(Invited)

Rongbin She1,2, Yongle Zhu1, Wenquan Liu1,2, Yuanfu Lu1, and Guangyuan Li1
Author Affiliations
  • 1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
  • 2Key Kaboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    References(100)

    [1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [2] Di Girolamo F V, Pagano M, Tredicucci A, et al. Detection of fungal infections in chestnuts: a terahertz imaging-based approach[J]. Food Control, 123, 107700(2021).

    [3] Liu Y, Liu H, Tang M, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC Advances, 9, 9354-9363(2019).

    [4] Zaytsev K I, Dolganova I N, Chernomyrdin N V, et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review[J]. Journal of Optics, 22, 013001(2020).

    [5] Son J H, Oh S J, Cheon H. Potential clinical applications of terahertz radiation[J]. Journal of Applied Physics, 125, 190901(2019).

    [6] Alves-Lima D, Song J, Li X R, et al. Review of terahertz pulsed imaging for pharmaceutical film coating analysis[J]. Sensors, 20, 1441(2020).

    [7] Shchepetilnikov A V, Gusikhin P A, Muravev V M, et al. New ultra-fast sub-terahertz linear scanner for postal security screening[J]. Journal of Infrared Millimeter and Terahertz Waves, 41, 655-664(2020).

    [8] Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner[J]. Journal of Infrared Millimeter and Terahertz Waves, 41, 632-641(2020).

    [9] Wan M, Healy J J, Sheridan J T. Terahertz phase imaging and biomedical applications[J]. Optics and Laser Technology, 122, 105859(2020).

    [10] Wang Y Y, Chen L Y, Xu D G, et al. Advances in terahertz three-dimensional imaging techniques[J]. Chinese Optics, 12, 1-8(2019).

    [11] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 20, 1716-1719(1995).

    [12] Li M Q, Tan Z Y, Qiu F C, et al. Fast reflective scanning imaging based on terahertz quantum-cascade laser[J]. Acta Optica Sinica, 37, 0611004(2017).

    [13] Liu J, An J F, Zhou R, et al. Terahertz near-field MIMO-SAR technology for human security inspection[J]. Opto-Electronic Engineering, 47, 190682(2020).

    [14] Yang Z B, Tang D Y, Hu J, et al. Near-field nanoscopic terahertz imaging of single proteins[J]. Small, 17, 2005814(2021).

    [15] Zhang Z B, Lu T A, Peng J Z, et al. Fourier single-pixel imaging techniques and applications[J]. Infrared and Laser Engineering, 48, 0603002(2019).

    [16] Sun B Q, Jiang S, Ma Y Y, et al. Application and development of single pixel imaging in the special wavebands and 3 D imaging[J]. Infrared and Laser Engineering, 49, 0303016(2020).

    [17] Huang W, Jiao S Y, Xiao C Y. Image processing algorithms related to single-pixel imaging: A review[J]. Laser & Optoelectronics Progress, 58, 1011021(2021).

    [18] Peng J Y, Jin H Q, Shi J H, et al. Data acquisition system for high speed single-pixel camera[J]. Optics and Precision Engineering, 22, 837-843(2014).

    [19] Chen T, Li Z W, W J L, et al. Imaging system of single pixel camera based on compressed sensing[J]. Optics and Precision Engineering, 20, 2523-2530(2012).

    [20] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [21] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).

    [22] Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X Rays[J]. Physical Review Letters, 117, 113901(2016).

    [23] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 39, 111-114(2014).

    [24] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [25] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015).

    [26] Zanotto L, Piccoli R, Dong J L, et al. Single-pixel terahertz imaging: a review[J]. Opto-Electronic Advances, 3, 200012(2020).

    [27] Chen S C, Du L H, Zhu L G. THz wave computational ghost imaging: principles and outlooks[J]. Opto-Electronic Engineering, 47, 200024(2020).

    [28] [28] Stantchev R I, PickwellMacPherson E. Spatial TerahertzLight Modulats f SinglePixel Cameras [MOL]Terahertz Technology [Wking Title]. (20210322). https: www. intechopen. comonlinefirst75638.

    [29] Bai Y F, Gao H Y, Liu T G, et al. Visibility of ghost imaging in a two-arm microscope imaging system[J]. Journal of Modern Optics, 59, 360-364(2012).

    [30] Shen Q, Bai Y F, Shi X H, et al. Ghost microscope imaging system from the perspective of coherent-mode representation[J]. Laser Physics Letters, 15, 035207(2018).

    [31] Zhang L H, Tang B, Wang F Q, et al. On the characteristics of photoacoustic imaging based on the algorithm of computational ghost imaging[J]. Lasers in Engineering, 25, 1-11(2013).

    [32] Huynh N, Zhang E, Betcke M, et al. Single-pixel optical camera for video rate ultrasonic imaging[J]. Optica, 3, 26-29(2016).

    [33] Yang J M, Gong L, Xu X, et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 8, 780(2017).

    [34] Rousset F, Ducros N, Peyrin F, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera[J]. Optics Express, 26, 10550-10558(2018).

    [35] Bian L H, Suo J L, Situ G H, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016).

    [36] Czajkowski K M, Pastuszczak A, Kotynski R. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 26, 20009-20022(2018).

    [37] Bi S, Zeng X, Tang X, et al. Compressive video recovery using block match multi-frame motion estimation based on single pixel cameras[J]. Sensors, 16, 318(2016).

    [38] Teng J J, Guo Q, Chen M H, et al. Time-encoded single-pixel 3D imaging[J]. APL Photonics, 5, 020801(2020).

    [39] Zhang Y W, Edgar M P, Sun B Q, et al. 3D single-pixel video[J]. Journal of Optics, 18, 035203(2016).

    [40] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [41] Clemente P, Duran V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 38, 2524-2527(2013).

    [42] Jiao S M, Feng J, Gao Y, et al. Visual cryptography in single-pixel imaging[J]. Optics Express, 28, 7301-7313(2020).

    [43] Zheng P X, Dai Q, Li Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 7, eabg0363(2021).

    [44] Gibson G M, Sun B Q, Edgar M P, et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017).

    [45] Lewis R A. A review of terahertz sources[J]. Journal of Physics D: Applied Physics, 47, 374001(2014).

    [46] Neu J, Schmuttenmaer C A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 124, 231101(2018).

    [47] Gong Y, Zhou Q, Tian H, et al. Terahertz radiation sources based on electronics[J]. Journal of Shenzhen University Science and Engineering, 36, 111-127(2019).

    [48] Liang G Z, Liu T, Wang Q J. Recent developments of terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1200118(2017).

    [49] Zhong K, Shi W, Xu D G, et al. Optically pumped terahertz sources[J]. Science China-Technological Sciences, 60, 1801-1818(2017).

    [50] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [51] Shen H, Gan L, Newman N, et al. Spinning disk for compressive imaging[J]. Optics Letters, 37, 46-48(2012).

    [52] Cai H L, Huang Q P, Hu X, et al. All-optical and ultrafast tuning of terahertz plasmonic metasurfaces[J]. Advanced Optical Materials, 6, 1800143(2018).

    [53] Daniel G, Egor S, Sebastián R, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 11, 47-59(2018).

    [54] Wang L, Zhang Y X, Guo X Q, et al. A review of THz modulators with dynamic tunable metasurfaces[J]. Nanomaterials, 9, 965(2019).

    [55] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [56] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [57] [57] Chen I C A, Park SW, Karaalioglu C, et al. Semiconduct based optically controlled THz optics [C]Proceedings of the Terahertz f Military Security Applications V, 2007.

    [58] Xie Z W, Wang X K, Ye J S, et al. Spatial terahertz modulator[J]. Scientific Reports, 3, 3347(2013).

    [59] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [60] [60] Bin Shams M I, Jiang Z, Rahman S, et al. Approaching realtime terahertz imaging using photoinduced reconfigurable aperture arrays [C]Proceedings of the Terahertz Physics, Devices, Systems Viii: Advanced Applications in Industry Defense, 2014.

    [61] Augustin S, Hieronymus J, Jung P, et al. Compressed sensing in a fully non-mechanical 350 GHz imaging setting[J]. Journal of Infrared Millimeter and Terahertz Waves, 36, 496-512(2015).

    [62] Kannegulla A, Bin Shams M I, Liu L, et al. Photo-induced spatial modulation of THz waves: Opportunities and limitations[J]. Optics Express, 23, 32098-32112(2015).

    [63] She R B, Liu W Q, Wei G L, et al. Terahertz single-pixel imaging improved by using silicon wafer with SiO2 passivation[J]. Applied Sciences-Basel, 10, 2427(2020).

    [64] Weis P, Garcia-Pomar J L, Hoeh M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 6, 9118-9124(2012).

    [65] Zhai D W, Liu H L, Sedao X, et al. Optically induced abnormal terahertz absorption in black silicon[J]. Chinese Physics B, 27, 027802(2018).

    [66] Shi Z W, Cao X X, Wen Q Y, et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).

    [67] Zhang B, He T, Zhong L, et al. Recent process of terahertz wave modulator based on organic photoelectric materials[J]. Chinese Journal of Laser, 46, 0614012(2019).

    [68] Ren Z, Cheng L, Hu L, et al. Photoinduced broad-band tunable terahertz absorber based on a VO2 thin film[J]. ACS Applied Materials & Interfaces, 12, 48811-48819(2020).

    [69] Gopalan P, Sensale-Rodriguez B. 2 D Materials for terahertz modulation[J]. Advanced Optical Materials, 8, 1900550(2020).

    [70] Zhao J P, Yiwen E, Williams K, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light-Science & Applications, 8, 55(2019).

    [71] Olivieri L, Gongora J S T, Peters L, et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 7, 186-191(2020).

    [72] Chen S C, Feng Z, Li J, et al. Ghost spintronic THz-emitter-array microscope[J]. Light-Science & Applications, 9, 99(2020).

    [73] Zhang Z J, Liu L, Sajak A A, et al. Spinning disk as a spatial light modulator for rapid infrared imaging[J]. IET Microwaves Antennas & Propagation, 11, 317-323(2017).

    [74] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: A review[J]. Optics Express, 28, 28190-28208(2020).

    [75] He Y H, Zhang A X, Li M F, et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector[J]. APL Photonics, 5, 056102(2020).

    [76] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [77] [77] Zhao Y Q, Zhang L L, Duan G T, et al. Singlepixel terahertz imaging via compressed sensing [C]Proceedings of the International Symposium on Photoelectronic Detection Imaging 2011 Terahertz Wave Technologies Applications, 2011.

    [78] [78] She R B, Lu Y F, Liu W Q, et al. A lowcost singlepixel terahertz imaging method using nearfield photomodulation compressed sensing [C]Proceedings of the Infrared, MillimeterWave, Terahertz Technologies Vi, 2019.

    [79] Lu Y, Wang X K, Sun W F, et al. Reflective single-pixel terahertz imaging based on compressed sensing[J]. IEEE Transactions on Terahertz Science and Technology, 10, 495-501(2020).

    [80] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 7225(2015).

    [81] She R B, Liu W Q, Lu Y F, et al. Fourier single-pixel imaging in the terahertz regime[J]. Applied Physics Letters, 115, 021101(2019).

    [82] Zhang Z B, Wang X Y, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017).

    [83] Zhang Z B, Wang X Y, Zheng G A, et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [84] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [85] Tian C W, Fei L K, Zheng W X, et al. Deep learning on image denoising: An overview[J]. Neural Networks, 131, 251-275(2020).

    [86] Higham C F, Murray-Smith R, Padgett M J, et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018).

    [87] Rizvi S, Cao J, Zhang K Y, et al. Deringing and denoising in extremely under-sampled Fourier single pixel imaging[J]. Optics Express, 28, 7360-7374(2020).

    [88] Long Z Y, Wang T Y, You C W, et al. Terahertz image super-resolution based on a deep convolutional neural network[J]. Applied Optics, 58, 2731-2735(2019).

    [89] Wang Y, Qi F, Wang J. Terahertz image super-resolution based on a complex convolutional neural network[J]. Optics Letters, 46, 3123-3126(2021).

    [90] Li H, Li B, Ma L P, et al. Terahertz spectrum imaging technology and its application in security inspection[J]. Journal of Yunnan Police College, 122-128(2020).

    [91] Cheng B B, Li H P, An J F, et al. Application of terahertz imaging in standoff security inspection[J]. Journal of Terahertz Science and Electronic Information Technology, 13, 843-848(2015).

    [92] Augustin S, Jung P, Frohmann S, et al. Terahertz dynamic aperture imaging at standoff distances using a compressed sensing protocol[J]. IEEE Transactions on Terahertz Science and Technology, 9, 364-372(2019).

    [93] Liu H X, Yao J Q, Wang Y Y, et al. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 35, 300-309(2016).

    [94] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [95] Stantchev R I, Phillips D B, Hobson P, et al. Compressed sensing with near-field THz radiation[J]. Optica, 4, 989-992(2017).

    [96] Chen S-C, Du L-H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over lambda/100[J]. Optics Letters, 44, 21-24(2019).

    [97] Olivieri L, Gongora J S T, Pasquazi A, et al. Time-resolved nonlinear ghost imaging[J]. ACS Photonics, 5, 3379-3388(2018).

    [98] Zhang Z B, Ye J Q, Deng Q W, et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector[J]. Optics Express, 27, 35394-35401(2019).

    [99] Jiao S M, Feng J, Gao Y, et al. Optical machine learning with incoherent light and a single-pixel detector[J]. Optics Letters, 44, 5186-5189(2019).

    [100] Limbacher B, Schoenhuber S, Wenclawiak M, et al. Terahertz optical machine learning for object recognition[J]. APL Photonics, 5, 126103(2020).

    Tools

    Get Citation

    Copy Citation Text

    Rongbin She, Yongle Zhu, Wenquan Liu, Yuanfu Lu, Guangyuan Li. Terahertz single-pixel computational imaging: Principles and applications(Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210717

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210717

    Topics