Laser & Optoelectronics Progress, Volume. 57, Issue 2, 21107(2020)
Mine Ground Point Cloud Extraction Algorithm Based on Statistical Filtering and Density Clustering
[1] Hui Z Y, Cheng P G, Guan Y L et al. Review on airborne LiDAR point cloud filtering[J]. Laser & Optoelectronics Progress, 55, 060001(2018).
[2] Zhao J D, Yang F H, Guo Y X. Unified algorithm for scattered point cloud denoising and simplification[J]. Journal of Computer Applications, 37, 2879-2883(2017).
[3] Yuan H, Pang J K, Mo J W. Denoising algorithm for bilateral filtered point cloud based on noise classification[J]. Journal of Computer Applications, 35, 2305-2310(2015).
[4] Deng W J, Ye J Y, Zhang T. Acquisition and denoising algorithm of laser point cloud oriented to robot polishing[J]. Acta Optica Sinica, 36, 0814002(2016).
[5] Li P F, Wu H E, Jing J F et al. Noise classification denoising algorithm for point cloud model[J]. Computer Engineering and Applications, 52, 188-192(2016).
[6] Lin H B, Fu D M, Wang Y T. Feature preserving denoising of scattered point cloud based on parametric adaptive and anisotropic Gaussian kernel[J]. Computer Integrated Manufacturing Systems, 23, 2583-2592(2017).
[7] Xu L, Huang X, Li G. Point clouds de-noise algorithm based on fuzzy C-means and mean filter[J]. Machine Building & Automation, 45, 5-7, 23(2016).
[8] Lü Y, Wan C H. A denoising method by layering for terrain point cloud from 3D laser scanner[J]. Journal of Geomatics Science and Technology, 31, 501-504(2014).
[9] Chen K, Zhang D, Zhang Y S. Point cloud data processing method of cavity 3D laser scanner[J]. Acta Optica Sinica, 33, 0812003(2013).
[10] Hui Z Y, Hu Y J. Review on morphological filtering algorithms based on LiDAR digital elevation model construction[J]. Laser & Optoelectronics Progress, 53, 080001(2016).
[11] Chen L Z, Feng B H. Denoising algorithm for bilateral filtered point cloud based on variance threshold. [C]∥2018 3rd International Conference on Materials Science, Machinery and Energy Engineering(MSMEE 2018), June 29, 2018, Taiyuan, Shanxi, China. [S.l.: s.n.](2018).
[12] Taubin G. A signal processing approach to fair surface design. [C]∥Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH'95, August 6-11, 1995, Los Angeles, CA, USA. New York: ACM, 351-358(1995).
[13] Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smoothing[J]. ACM Transactions on Graphics, 22, 943-949(2003).
[14] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising[J]. ACM Transactions on Graphics, 22, 950-953(2003).
[15] Wang J X, Zhang X Y, Hong S X et al. Aerial LiDAR point cloud filtering algorithm combining mathematical morphology and TIN[J]. Science of Surveying and Mapping, 44, 151-156, 183(2019).
[16] Xing C B, Deng X S, Xu K. Contour determination method for threshold of morphological filtering key parameters[J]. Laser & Optoelectronics Progress, 56, 162802(2019).
[17] Zhao M B, He J, Tian J S et al. Ladar data filtering method based on improved progressive multi-scale mathematic morphology[J]. Acta Optica Sinica, 33, 0328001(2013).
[18] Niu X J, Wang M L, He D J. A point cloud denoising and smoothing method based on fusion of clustering and filtering[J]. Computer Applications and Software, 33, 148-152(2016).
[19] Su B Y, Ma J Y, Peng Y S et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 28, 2329-2334, 2341(2016).
[20] Zhang Q Y, Chen H. 9(6): 101-104, Ⅳ-Ⅴ[J]. Zhu S. Application of density-based clustering algorithms in noise removing of continuous distributed point clouds. Geospatial Information(2011).
[21] Tian Q H, Bai R L, Li D. Point cloud segmentation of scattered workpieces based on improved Euclidean clustering[J]. Laser & Optoelectronics Progress, 54, 121503(2017).
[22] Feng D H, Shi B, Lu X S et al. A multi-beam point cloud denoising algorithm considering underwater topographic features[J]. Journal of Geomatics Science and Technology, 34, 364-369(2017).
[23] Lin W Y, Zhou S Y, Yuan Z P. Research on the method for denoising of point cloud based on least trimmed squares[J]. Metrology & Measurement Technique, 43, 60-62(2016).
[24] Zhao K, Xu Y C, Li Y L et al. Large-scale scattered point-cloud denoising based on VG-DBSCAN algorithm[J]. Acta Optica Sinica, 38, 1028001(2018).
[25] Li M L, Li G Y, Zong W P[J]. Accurate and fast denoising method of laser-scanned point clouds Bulletin of Surveying and Mapping, 2015, 27-29.
[26] Li R Z, Yang M, Ran Y et al. Point cloud denoising and simplification algorithm based on method library[J]. Laser & Optoelectronics Progress, 55, 011008(2018).
[27] Chen S C, Dai H Y, Wang C et al. Method for filtering dense noise from laser scanning data[J]. Laser & Optoelectronics Progress, 56, 062801(2019).
[28] Zhao Y M, Xiong H L, Zhou Y et al[M]. Pattern recognition(2013).
[29] Zhang Y, Mou X Y[M]. The principle and application of statistics(2014).
[30] Guo H, Su W, Zhu D H et al[M]. Point cloud library PCL from entry to proficient(2019).
Get Citation
Copy Citation Text
Yang Peng, Liu Deer, Liu Jingyu, Zhang Heyuan. Mine Ground Point Cloud Extraction Algorithm Based on Statistical Filtering and Density Clustering[J]. Laser & Optoelectronics Progress, 2020, 57(2): 21107
Category: Imaging Systems
Received: May. 30, 2019
Accepted: --
Published Online: Jan. 3, 2020
The Author Email: Liu Deer (landserver@163.com)