Collection Of theses on high power laser and plasma physics, Volume. 12, Issue 1, 8229(2014)
Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration
[1] [1] C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton,W. H.Williams, C. C.Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
[2] [2] C. Cavailler, “Inertial fusion with the LMJ,” Plasma Phys. Controlled Fusion 47, B389–B403 (2005).
[3] [3] S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular-dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[4] [4] J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” Proc. SPIE 2633, 634–644 (1995).
[5] [5] “Two-dimensional SSD on OMEGA,” LLE Rev. 69, 1–10 (1996).
[6] [6] J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997).
[7] [7] J. A. Marozas and J. H. Kelly, “Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion,” LLE Rev. 78, 62–81 (1999).
[8] [8] S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[9] [9] S. P. Regan, J. A. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000).
[10] [10] S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solidstate laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
[11] [11] J. A. Marozas, T. J. B. Collins, and J. D. Zuegel, “Multiple-FM smoothing by spectral dispersion-an augmented laser speckle smoothing scheme,” LLE Rev. 114, 73–84 (2008).
[12] [12] D. Eimerl, E. M. Campbell, W. Krupke, J. Zweiback, W. L. Kruer, J. Marozas, J. Zuegel, J. Myatt, J. Kelly, D. Froula, and R. L. McCrory, “StarDriver: a flexible laser driver for inertial confinement fusion and high energy density physics,” J. Fusion Energy 33, 476–488 (2014).
[13] [13] J. J. Thomson, “Finite-bandwidth effects on parametricinstability in an inhomogeneous plasma,” Nucl. Fusion 15, 237–247 (1975).
[14] [14] K. Estabrook, J. Harte, E. M. Campbell, F. Ze, D. W. Phillion, M. D. Rosen, and J. T. Larsen, “Estimates of intensity, wavelength, and bandwidth scaling of Brillouin backscatter,” Phys. Rev. Lett. 46, 724–727 (1981).
[15] [15] K. Estabrook and W. L. Kruer, “Theory and simulation of one-dimensional Raman backward and forward scattering,” Phys. Fluids 26, 1892–1903 (1983).
[16] [16] W. H. Tan, Z. Q. Lin, M. Gu, A. Shi, W. Y. Yu, and X. M. Deng, “The influence of laser frequency bandwidth on the time and space resolved structures of the 2-omega-0 harmonicgeneration,” Phys. Fluids 30, 1510–1514 (1987).
[17] [17] B. W. Boreham, H. Hora, M. Aydin, S. Eliezer, M. P. Goldsworthy, G. Min, A. K. Gahatak, P. Lalousis, R. J. Stening, H. Szichman, B. Luther-Davies, K. G. H. Baldwin, R. A. M. Maddever, and A. V. Rode, “Beam smoothing and temporal effects: optimized preparation of laser beams for direct-drive inertial confinement fusion,” Laser Part. Beams 15, 277–295 (1997).
[18] [18] G. Riazuelo and G. Bonnaud, “Coherence properties of a smoothed laser beam in a hot plasma,” Phys. Plasmas 7, 3841–3844 (2000).
[19] [19] M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999).
[20] [20] M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M (2007).
[21] [21] J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32, 1408–1410 (2007).
[22] [22] R. Xin and J. D. Zuegel, “Directly chirped laser source for chirped-pulse amplification,” in Lasers, Sources and Related Photonic Devices (Optical Society of America, 2010), p. AMD3.
[23] [23] E. J. Bochove, E. M. Decarvalho, and J. E. R. Filho, “FM–AM conversion by material dispersion in an optical fiber,” Opt. Lett. 6, 58–60 (1981).
[24] [24] A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude-modulation conversion of CW laser-light in optical fibers,” Electron. Lett. 22, 409–411 (1986).
[25] [25] X.-C. Tian, Z. Sui, Z.-H. Huang, H.-H. Lin, J.-J. Wang, R. Zhang, D.-P. Xu, Y.-L. Zhang, and N. Zhu, “Periodic linear chirped pulse generation based on direct phase modulation,” Acta Phys. Sin. 62, 104216 (2013).
[26] [26] S. Hocquet, D. Penninckx, E. Bordenave, C. Gouédard, and Y. Jaouen, “FM-to-AM conversion in high-power lasers,” Appl. Opt. 47, 3338–3349 (2008).
[27] [27] E. Bonek, M. Knecht, G. Magerl, K. Preis, and K. R. Richter, “Coupling and tuning of trapped-mode microwave resonators,” AEU Int. J. Electron. C 32, 209–214 (1978).
[28] [28] G. M. Carter, “Tunable high-efficiency microwave frequencyshifting of infrared-lasers,” Appl. Phys. Lett. 32, 810–812 (1978).
[29] [29] N. H. Tran, T. F. Gallagher, J. P.Watjen, G. R. Janik, and C. B. Carlisle, “High-efficiency resonant cavity microwave optical modulator,” Appl. Opt. 24, 4282–4284 (1985).
[30] [30] T. F. Gallagher, N. H. Tran, and J. P. Watjen, “Principles of a resonant cavity optical modulator,” Appl. Opt. 25, 510–514 (1986).
[31] [31] A. A. Godil, A. S. Hou, B. A. Auld, and D. M. Bloom, “Harmonic mode-locking of a Nd-Bel laser using a 20-GHz dielectric resonator optical modulator,” Opt. Lett. 16, 1765–1767 (1991).
[32] [32] F. Z. Guo, C. T. Yu, L. Chen, T. Kobayashi, and Y. Chen, “Quasivelocity-matched electrooptic phase modulator for the synthesis of ultrashort optical pulses,” IEEE J. Quantum Electron. 33, 879–882 (1997).
[33] [33] J. D. Zuegel and J. A. Marozas, “High-frequency bulk phase modulator for broadband smoothing by spectral dispersion on OMEGA,” LLE Rev. 78, 53–61 (1999).
[34] [34] J. D. Zuegel and D. W. Jacobs-Perkins, “Efficient, highfrequency bulk phase modulator,” Appl. Opt. 43, 1946–1950 (2004).
[35] [35] Y. Jiang, X. Li, S. Zhou, W. Fan, and Z. Lin, “Microwave resonant electro-optic bulk phase modulator for two-dimensional smoothing byspectral dispersion in SG-II,” Chin. Opt. Lett. 11, 052301 (2013).
[36] [36] I. P. Kaminow and J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE 51, 132–136 (1963).
Get Citation
Copy Citation Text
Peng Zhang, Youen Jiang, Shenlei Zhou, Wei Fan, Xuechun Li. Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration[J]. Collection Of theses on high power laser and plasma physics, 2014, 12(1): 8229
Category:
Received: Oct. 9, 2014
Accepted: --
Published Online: May. 27, 2017
The Author Email: Zhang Peng (zplianhe@siom.ac.cn)