Laser & Optoelectronics Progress, Volume. 56, Issue 20, 202404(2019)

Plasmonic Sensing on Fiber Tip

Tian Yang*, Cheng Chen, Xiaodan Wang, Xin Zhou, and Zeyu Lei
Author Affiliations
  • State Key Laboratory of Regional Optical Fiber Communication Network and New Optical Communication System, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(149)

    [1] Institute of Physics. The health of photonics: how light-based technologies are solving industry challenges, and how they can be harnessed to impact future economic growth[R]. UK: IOP(2018).

    [2] Andrade G F S, Brolo A G. Nanoplasmonic structures in optical fibers[M]. ∥Dmitriev A. Nanoplasmonic sensors. Integrated analytical systems. New York, NY: Springer, 289-315(2012).

    [3] Kostovski G, Stoddart P R, Mitchell A. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies[J]. Advanced Materials, 26, 3798-3820(2014).

    [7] Yang T, He X L, Zhou X et al. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection[J]. Optics & Laser Technology, 101, 468-478(2018).

    [8] Xu Y, Bai P, Zhou X D et al. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth[J]. Advanced Optical Materials, 7, 1801433(2019).

    [19] Principe M, Consales M, Micco A et al. Optical fiber meta-tips[J]. Light: Science & Applications, 6, e16226(2017).

    [22] Liang Y Z, Yu Z Y, Li L X et al. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing[J]. Scientific Reports, 9, 7379(2019).

    [27] Kim H M, Uh M, Jeong D H et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 280, 183-191(2019).

    [28] Fan X D, White I M, Shopova S I et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 620, 8-26(2008).

    [29] Lee B, Roh S, Park J. Current status of micro- and nano-structured optical fiber sensors[J]. Optical Fiber Technology, 15, 209-221(2009).

    [30] Slavík R, Homola J. tyrok J. Single-mode optical fiber surface plasmon resonance sensor[J]. Sensors and Actuators B: Chemical, 54, 74-79(1999).

    [31] Piliarik M, Homola J, Maníková Z et al. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber[J]. Sensors and Actuators B: Chemical, 90, 236-242(2003).

    [32] Villatoro J, Monzón-Hernández D, Mejía E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors[J]. Applied Optics, 42, 2278-2283(2003).

    [33] Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 39, 1235-1237(2014).

    [34] Li D C, Wu J W, Wu P et al. Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer[J]. Sensors and Actuators B: Chemical, 213, 295-304(2015).

    [35] Jauregui-Vazquez D, Haus J W. Negari A B H, et al. Bitapered fiber sensor: signal analysis[J]. Sensors and Actuators B: Chemical, 218, 105-110(2015).

    [36] Patnaik A, Senthilnathan K, Jha R. Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 27, 2437-2440(2015).

    [37] Shi S, Wang L B, Su R X et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays[J]. Biosensors and Bioelectronics, 74, 454-460(2015).

    [38] Li L X, Liang Y Z, Liu Q et al. Dual-channel fiber-optic biosensor for self-compensated refractive index measurement[J]. IEEE Photonics Technology Letters, 28, 2110-2113(2016).

    [39] Lu B Y, Lai X C, Zhang P H et al. Roughened cylindrical gold layer with curve graphene coating for enhanced sensitivity of fiber SPR sensor. [C]∥2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), June 18-22, 2017, Kaohsiung, Taiwan, China. New York: IEEE, 1991-1994(2017).

    [40] Kant R, Tabassum R, Gupta B D. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor[J]. Biosensors and Bioelectronics, 99, 637-645(2018).

    [41] Quero G, Consales M, Severino R et al. Long period fiber grating nano-optrode for cancer biomarker detection[J]. Biosensors and Bioelectronics, 80, 590-600(2016).

    [42] Guo T, Liu F, Guan B O et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 78, 19-33(2016).

    [43] Guo T. Review on plasmonic optical fiber grating biosensors[J]. Acta Optica Sinica, 38, 0328006(2018).

    [44] Lei Z Y, Zhou X, Yang J et al. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing[J]. Applied Physics Letters, 110, 171107(2017).

    [45] Lei Z Y, Chen X, Wang X D et al. Surface-emitting surface plasmon polariton laser in a second-order distributed feedback defect cavity[J]. ACS Photonics, 6, 612-619(2019).

    [46] Kim H T, Yu M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing[J]. Scientific Reports, 9, 1922(2019).

    [47] Zhang X P, Liu F F, Lin Y H. Direct transfer of metallic photonic structures onto end facets of optical fibers[J]. Frontiers in Physics, 4, 31(2016).

    [48] Jia P P, Yang Z L, Yang J et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination[J]. ACS Sensors, 1, 1078-1083(2016).

    [49] Li S J, Li W D. Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet[J]. Optics Express, 25, 29380-29388(2017).

    [50] Wang T X, Cao R, Ning B et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound[J]. Applied Physics Letters, 107, 153702(2015).

    [51] Zhou X, Cai D, He X L et al. Ultrasound detection at fiber end-facets with surface plasmon resonance cavities[J]. Optics Letters, 43, 775-778(2018).

    [52] Ashkenazi S, Chao C Y, Guo L J et al. Ultrasound detection using polymer microring optical resonator[J]. Applied Physics Letters, 85, 5418-5420(2004).

    [53] Huang S W, Chen S L, Ling T et al. Low-noise wideband ultrasound detection using polymer microring resonators[J]. Applied Physics Letters, 92, 193509(2008).

    [54] Zhang C, Ling T, Chen S L et al. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging[J]. ACS Photonics, 1, 1093-1098(2014).

    [55] Zhang C, Chen S L, Ling T et al. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization[J]. IEEE Sensors Journal, 15, 3241-3248(2015).

    [56] Li H, Dong B Q, Zhang Z et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy[J]. Scientific Reports, 4, 4496(2014).

    [57] Leinders S M, Westerveld W J, Pozo J et al. A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane[J]. Scientific Reports, 5, 14328(2015).

    [58] Zhang S L, Chen J, He S L. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor[J]. Optics Communications, 382, 113-118(2017).

    [59] Kim K H, Luo W, Zhang C et al. Air-coupled ultrasound detection using capillary-based optical ring resonators[J]. Scientific Reports, 7, 109(2017).

    [60] Wei H M, Krishnaswamy S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection[J]. Optics Letters, 42, 2655-2658(2017).

    [61] Morris P, Hurrell A, Shaw A et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 125, 3611-3622(2009).

    [62] Zhang E Z, Beard P C. A miniature all-optical photoacoustic imaging probe[J]. Proceedings of SPIE, 7899, 78991F(2011).

    [63] Allen T J, Zhang E, Beard P C. Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor[J]. Proceedings of SPIE, 9323, 93230Z(2015).

    [64] Guggenheim J A, Li J, Allen T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 11, 714-719(2017).

    [65] Wissmeyer G, Pleitez M A, Rosenthal A et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 7, 53(2018).

    [66] Roussel B, Cochard J, Bouye C. Biophotonics market: technologies and market analysis France: European Photonics Industry Consortium,[R]. Tematys and Yole Développement(2013).

    [68] Thygesen K, Alpert J S, Jaffe A S et al. Third universal definition of myocardial infarction[J]. European Heart Journal, 33, 2551-2567(2012).

    [69] Ansari R, Zhang E Z, Desjardins A E et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 7, 75(2018).

    [70] Huynh N T, Lucka F, Zhang E Z et al. High speed multi-beam Fabry-Perot scanner for fast high resolution photoacoustic imaging. [C]∥SPIE Photonics West BIOS, January 27-28, 2018, San Francisco, USA. USA: SPIE, 10494-107(2018).

    [71] Guggenheim J A, Zhang E Z, Beard P C. Photoacoustic imaging with highly sensitive 2D planoconcave optical microresonators arrays. [C]∥SPIE Photonics West BIOS, January 27-28, 2018, San Francisco, USA. USA: SPIE, 10494-68(2018).

    [72] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [73] Novotny L, van Hulst N. Antennas for light[J]. Nature Photonics, 5, 83-90(2011).

    [74] Cubukcu E, Kort E A, Crozier K B et al. Plasmonic laser antenna[J]. Applied Physics Letters, 89, 093120(2006).

    [75] Ciracì C, Hill R T, Mock J J et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 337, 1072-1074(2012).

    [76] Long J, Yi H, Li H Q et al. Reproducible ultrahigh SERS enhancement in single deterministic hotspots using nanosphere-plane antennas under radially polarized excitation[J]. Scientific Reports, 6, 33218(2016).

    [77] Zhu W Q, Esteban R, Borisov A G et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 7, 11495(2016).

    [78] Xu D, Xiong X, Wu L et al. Quantum plasmonics: new opportunity in fundamental and applied photonics[J]. Advances in Optics and Photonics, 10, 703-756(2018).

    [79] Baumberg J J, Aizpurua J, Mikkelsen M H et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 18, 668-678(2019).

    [80] Jackman J A, Ferhan A R, Cho N J. Nanoplasmonic sensors for biointerfacial science[J]. Chemical Society Reviews, 46, 3615-3660(2017).

    [81] Sonnichsen C, Reinhard B M, Liphardt J et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature Biotechnology, 23, 741-745(2005).

    [82] Liu G L, Yin Y D, Kunchakarra S et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting[J]. Nature Nanotechnology, 1, 47-52(2006).

    [83] Chen T H, Hong Y, Reinhard B M. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers[J]. Nano Letters, 15, 5349-5357(2015).

    [84] Camden J P, Dieringer J A, Wang Y M et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. Journal of the American Chemical Society, 130, 12616-12617(2008).

    [85] Wang D X, Zhu W Q, Best M D et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas[J]. Nano Letters, 13, 2194-2198(2013).

    [86] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [87] Tang L, Kocabas S E, Latif S et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nature Photonics, 2, 226-229(2008).

    [88] Miller D A B. Attojoule optoelectronics for low-energy information processing and communications[J]. Journal of Lightwave Technology, 35, 346-396(2017).

    [89] Ward D R, Hüser F, Pauly F et al. Optical rectification and field enhancement in a plasmonic nanogap[J]. Nature Nanotechnology, 5, 732-736(2010).

    [90] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [91] Metzger B, Hentschel M, Schumacher T et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas[J]. Nano Letters, 14, 2867-2872(2014).

    [92] Aouani H, Rahmani M, Navarro-Cía M et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna[J]. Nature Nanotechnology, 9, 290-294(2014).

    [93] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).

    [94] Dong Z C, Zhang X L, Gao H Y et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons[J]. Nature Photonics, 4, 50-54(2010).

    [95] Chikkaraddy R, de Nijs B, Benz F et al. . Single-molecule strong coupling at room temperature in plasmonic nanocavities[J]. Nature, 535, 127-130(2016).

    [96] Savage K J, Hawkeye M M, Esteban R et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 491, 574-577(2012).

    [97] Tame M S. McEnery K R, Ozdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 9, 329-340(2013).

    [98] Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nature Communications, 5, 5228(2014).

    [99] Tan S F, Wu L. Yang J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 343, 1496-1499(2014).

    [100] Li J F, Huang Y F, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 464, 392-395(2010).

    [101] Liu B A, Wang D X, Shi C et al. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation[J]. Optics Express, 19, 10049-10056(2011).

    [102] Mertens J, Eiden A L, Sigle D O et al. Controlling subnanometer gaps in plasmonic dimers using graphene[J]. Nano Letters, 13, 5033-5038(2013).

    [103] Li G C, Zhang Q, Maier S A et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry[J]. Nanophotonics, 7, 1865-1889(2018).

    [104] Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano letters, 10, 4040-4048(2010).

    [105] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014).

    [106] Long J, Yang T. Observation of single molecule dynamic behaviors with SERS: desorption and conformation switching. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA, FM4N, 6(2016).

    [107] Choi H K, Park W H, Park C G et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy[J]. Journal of the American Chemical Society, 138, 4673-4684(2016).

    [108] Benz F, Schmidt M K, Dreismann A et al. Single-molecule optomechanics in “picocavities”[J]. Science, 354, 726-729(2016).

    [109] Wang X D, Yi H, Yang T. Efficient four-wave mixing in loaded nanoscale plasmonic hotspots. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA, NW1A, 6(2017).

    [110] Zhang L, Yu Y J, Chen L G et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 8, 580(2017).

    [111] Yang T, Long J. -05-30)[2019-08-01]. https:∥arxiv., org/abs/1601, 03324(2017).

    [112] Lombardi A, Schmidt M K, Weller L et al. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking[J]. Physical Review X, 8, 011016(2018).

    [113] Wang X, Li M H, Meng L Y et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates[J]. ACS Nano, 8, 528-536(2014).

    [114] Lin K Q, Yi J, Zhong J H et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering[J]. Nature Communications, 8, 14891(2017).

    [115] Hill R T, Mock J J, Hucknall A et al. Plasmon ruler with angstrom length resolution[J]. ACS Nano, 6, 9237-9246(2012).

    [116] Mock J J, Hill R T, Tsai Y J et al. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation[J]. Nano Letters, 12, 1757-1764(2012).

    [117] Chen W, Zhang S P, Deng Q et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons[J]. Nature Communications, 9, 801(2018).

    [118] Readman C, de Nijs B, Szabó I et al. . Anomalously large spectral shifts near the quantum tunnelling limit in plasmonic rulers with subatomic resolution[J]. Nano Letters, 19, 2051-2058(2019).

    [119] Chikkaraddy R, Turek V A, Kongsuwan N et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami[J]. Nano Letters, 18, 405-411(2018).

    [120] Yi H, Long J, Li H Q et al. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots[J]. Optics Express, 23, 8338-8347(2015).

    [121] Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 498, 82-86(2013).

    [122] Jiang S, Zhang Y, Zhang R et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature Nanotechnology, 10, 865-869(2015).

    [123] Zhang Y, Meng Q S, Zhang L et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity[J]. Nature Communications, 8, 15225(2017).

    [124] Zhang Y, Luo Y, Zhang Y et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 531, 623-627(2016).

    [125] Wang L, Xu X F. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging[J]. Applied Physics Letters, 90, 261105(2007).

    [126] Taminiau T H, Moerland R J, Segerink F B et al. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence[J]. Nano Letters, 7, 28-33(2007).

    [127] Wang Y, Srituravanich W, Sun C et al. Plasmonic nearfield scanning probe with high transmission[J]. Nano Letters, 8, 3041-3045(2008).

    [128] Zou Y S, Steinvurzel P, Yang T et al. Surface plasmon resonances of optical antenna atomic force microscope tips[J]. Applied Physics Letters, 94, 171107(2009).

    [129] Burresi M, van Oosten D, Kampfrath T et al. . Probing the magnetic field of light at optical frequencies[J]. Science, 326, 550-553(2009).

    [130] Fleischer M, Weber-Bargioni A, Altoe M V et al. Gold nanocone near-field scanning optical microscopy probes[J]. ACS Nano, 5, 2570-2579(2011).

    [131] Weber-Bargioni A, Schwartzberg A, Cornaglia M et al. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes[J]. Nano Letters, 11, 1201-1207(2011).

    [132] Umakoshi T, Yano T A, Saito Y et al. Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy[J]. Applied Physics Express, 5, 052001(2012).

    [133] Berweger S, Atkin J M, Olmon R L et al. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale[J]. The Journal of Physical Chemistry Letters, 3, 945-952(2012).

    [134] Kravtsov V, Ulbricht R, Atkin J M et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 11, 459-464(2016).

    [135] Fleischer M. Near-field scanning optical microscopy nanoprobes[J]. Nanotechnology Reviews, 1, 313-338(2012).

    [136] Huth F, Chuvilin A, Schnell M et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy[J]. Nano Letters, 13, 1065-1072(2013).

    [137] Schuck P J, Weber-Bargioni A, Ashby P D et al. Life beyond diffraction: opening new routes to materials characterization with next-generation optical near-field approaches[J]. Advanced Functional Materials, 23, 2539-2553(2013).

    [138] Maouli I, Taguchi A, Saito Y et al. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging[J]. Applied Physics Express, 8, 032401(2015).

    [139] Zhao Y. Saleh A A E, van de Haar M A, et al. Nanoscopic control and quantification of enantioselective optical forces[J]. Nature Nanotechnology, 12, 1055-1059(2017).

    [140] Ma X Z, Zhu Y Z, Yu N et al. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes[J]. Nano Letters, 19, 100-107(2019).

    [141] Kim S, Yu N, Ma X Z et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy[J]. Nature Photonics, 13, 636-643(2019).

    [142] He X L, Yang L, Yang T. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides[J]. Optics Express, 19, 12865-12872(2011).

    [143] Kalkbrenner T, Ramstein M, Mlynek J et al. A single gold particle as a probe for apertureless scanning near-field optical microscopy[J]. Journal of Microscopy, 202, 72-76(2001).

    [144] Kühn S, Håkanson U, Rogobete L et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna[J]. Physical Review Letters, 97, 017402(2006).

    [145] Novotny L, Hecht B[M]. Principles of nano-optics(2012).

    [146] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles[J]. Physical Review Letters, 98, 026104(2007).

    [147] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 96, 113002(2006).

    [148] Kim Z H, Leone S R. High-resolution apertureless near-field optical imaging using gold nanosphere probes[J]. The Journal of Physical Chemistry B, 110, 19804-19809(2006).

    [149] Olk P, Renger J, Wenzel M T et al. Distance dependent spectral tuning of two coupled metal nanoparticles[J]. Nano Letters, 8, 1174-1178(2008).

    [150] Chen C, Li H Q, Li H et al. Localized surface plasmon resonance scanning microscopy with optical antenna on fiber taper. [C]∥Proceedings of the 19th IEEE International Conference on Nanotechnology, Macao. New York: IEEE(2019).

    Tools

    Get Citation

    Copy Citation Text

    Tian Yang, Cheng Chen, Xiaodan Wang, Xin Zhou, Zeyu Lei. Plasmonic Sensing on Fiber Tip[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Aug. 2, 2019

    Accepted: Aug. 28, 2019

    Published Online: Oct. 22, 2019

    The Author Email: Tian Yang (tianyang@sjtu.edu.cn)

    DOI:10.3788/LOP56.202404

    Topics