Acta Optica Sinica, Volume. 42, Issue 3, 0327007(2022)
Progress in Gain-Switched Semiconductor Lasers for Quantum Communication
[1] Guo G C. Research status and future of quantum information technology[J]. Scientia Sinica (Informationis), 50, 1395-1406(2020).
[2] [2] Hong KW, Foong OM, Low TJ. Challenges in quantum key distribution: a review[C]∥Proceedings of the 4th International Conference on Information and Network Security - ICINS '16, December 28-31, 2016, Kuala Lumpur, Malaysia. New York: ACM Press, 2016: 29- 33.
[3] Bennett C H. Quantum cryptography: public key distribution and coin tossing. [C]∥Proceedings of IEEE International Conference on Computers. New York: IEEE(1984).
[4] Chen Y A, Zhang Q, Chen T Y et al. An integrated space-to-ground quantum communication network over 4,600 kilometres[J]. Nature, 589, 214-219(2021).
[5] Tang Y L, Yin H L, Ma X F et al. Source attack of decoy-state quantum key distribution using phase information[J]. Physical Review A, 88, 022308(2013).
[6] Zhu N H, Shi Z, Zhang Z K et al. Directly modulated semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-19(2018).
[7] Basov N G, Krokhin O N, Popov Y M. Generation, amplification, and detection of infrared and optical radiation by quantum-mechanical systems[J]. Soviet Physics Uspekhi, 3, 702-728(1961).
[8] Basov N G, Nikitin V V, Semenov A S. Dynamics of semiconductor injection lasers[J]. Soviet Physics Uspekhi, 12, 219-240(1969).
[9] Bernard M G A, Duraffourg G. Laser conditions in semiconductors[J]. Physica Status Solidi (b), 1, 699-703(1961).
[10] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366(1962).
[11] Panish M B, Hayashi I, Sumski S. Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm 2[J]. Applied Physics Letters, 16, 326-327(1970).
[12] Pataca D M, Gunning P, Rocha M L et al. Gain-switched DFB lasers[J]. Journal of Microwaves and Optoelectronics, 1, 46-63(1997).
[13] Lau K Y. Gain switching of semiconductor injection lasers[J]. Applied Physics Letters, 52, 257-259(1988).
[14] Zhou Q, Liu J L, Gu Y H et al. Gain-switched semiconductor pulsed laser for quantum secure communication[J]. Chinese Journal of Lasers, 43, 0502005(2016).
[15] Zhou F Z, Ma G B, Shen L Q et al. Studies on the ps gain-switching of a semiconductor laser[J]. Acta Physica Sinica, 43, 580-590(1994).
[16] Singh U, Green M M. High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz[J]. IEEE Journal of Solid-State Circuits, 40, 1658-1661(2005).
[17] Stover H L, Steier W H. Locking of laser oscillators by light injection[J]. Applied Physics Letters, 8, 91-93(1966).
[18] Girard A. The effects of the insertion of a CW, low-pressure CO2 laser into a TEA CO2 laser cavity[J]. Optics Communications, 11, 346-351(1974).
[19] Zhou B K, Gao Y Z, Chen T R et al[M]. The principle of laser, 228-233(2000).
[20] Liu Y F, Liang W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry-Perot cavity[J]. Chinese Journal of Lasers, 48, 1715001(2021).
[21] Peng H T, Wang J, Ma C et al. Arbitrary waveform generation of enhanced high-order harmonics based on injection locking[J]. Acta Optica Sinica, 40, 0419001(2020).
[22] Comandar L C, Lucamarini M, Fröhlich B et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers[J]. Nature Photonics, 10, 312-315(2016).
[23] Comandar L C, Lucamarini M, Fröhlich B et al. Near perfect mode overlap between independently seeded, gain-switched lasers[J]. Optics Express, 24, 17849-17859(2016).
[24] Zhou Q, Valivarthi R, John C et al. Practical quantum random-number generation based on sampling vacuum fluctuations[J]. Quantum Engineering, 1, e8(2019).
[25] Yuan Z L, Lucamarini M, Dynes J F et al. Robust random number generation using steady-state emission of gain-switched laser diodes[J]. Applied Physics Letters, 104, 261112(2014).
[26] Hughes R J, Morgan G L, Peterson C G. Quantum key distribution over a 48 km optical fibre network[J]. Journal of Modern Optics, 47, 533-547(2000).
[27] Dixon A R, Yuan Z L, Dynes J F et al. Continuous operation of high bit rate quantum key distribution[J]. Applied Physics Letters, 96, 161102(2010).
[28] Dixon A R, Dynes J F, Lucamarini M et al. High speed prototype quantum key distribution system and long term field trial[J]. Optics Express, 23, 7583-7592(2015).
[29] Grünenfelder F, Boaron A, Rusca D et al. Simple and high-speed polarization-based QKD[J]. Applied Physics Letters, 112, 051108(2018).
[30] Briegel H J, Dür W, Cirac J I et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 81, 5932-5935(1998).
[31] Zhang X Y, Yuan C Z, Wei S H et al. Rare earth ion doped solid state quantum memory[J]. Low Temperature Physical Letters, 41, 315-334(2019).
[32] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 409, 46-52(2001).
[33] Sun Q C. Experimental quantum teleportation in metropolitan optical fiber networks[D]. Shanghai: Shanghai Jiao Tong University(2017).
[34] Yuan Z L, Fröhlich B, Lucamarini M et al. Directly phase-modulated light source[J]. Physical Review X, 6, 031044(2016).
[35] Bennett B R. Soref R A, del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP[J]. IEEE Journal of Quantum Electronics, 26, 113-122(1990).
[36] Roberts G L, Lucamarini M, Dynes J F et al. A direct GHz-clocked phase and intensity modulated transmitter applied to quantum key distribution[J]. Quantum Science and Technology, 3, 045010(2018).
[37] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145(2002).
[38] Lo H K, Curty M, Tamaki K. Secure quantum key distribution[J]. Nature Photonics, 8, 595-604(2014).
[39] Xu F H, Ma X F, Zhang Q et al. Secure quantum key distribution with realistic devices[J]. Reviews of Modern Physics, 92, 025002(2020).
[40] Fan-Yuan G J, Lu F Y, Wang S et al. Measurement-device-independent quantum key distribution for nonstandalone networks[J]. Photonics Research, 9, 1881-1891(2021).
[41] Comandar L C, Fröhlich B, Lucamarini M et al. Room temperature single-photon detectors for high bit rate quantum key distribution[J]. Applied Physics Letters, 104, 021101(2014).
[42] Woodward R I, Lo Y S, Pittaluga M et al. Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers[J]. Npj Quantum Information, 7, 58(2021).
[43] Ma X F. Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution[J]. Physical Review A, 86, 052305(2012).
[44] Curty M, Xu F H, Cui W et al. Finite-key analysis for measurement-device-independent quantum key distribution[J]. Nature Communications, 5, 3732(2014).
[45] Wei K J, Li W, Tan H et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics[J]. Physical Review X, 10, 031030(2020).
[46] Liu H, Jiang C, Zhu H T et al. Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km[J]. Physical Review Letters, 126, 250502(2021).
[47] Semenenko H, Sibson P, Hart A et al. Chip-based measurement-device-independent quantum key distribution[J]. Optica, 7, 238-242(2020).
[48] Yin H L, Chen T Y, Yu Z W et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 117, 190501(2016).
[49] Valivarthi R, Lucio-Martinez I, Chan P et al. Measurement-device-independent quantum key distribution: from idea towards application[J]. Journal of Modern Optics, 62, 1141-1150(2015).
[50] Paraïso T K, Roger T, Marangon D G et al. A photonic integrated quantum secure communication system[J]. Nature Photonics, 15, 850-856(2021).
[51] Roger T, de Marco I, Paraiso T et al. Interferometric quantum random number generation on chip. [C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, FM2M, 1(2019).
[52] Valivarthi R. Puigibert M L G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network[J]. Nature Photonics, 10, 676-680(2016).
[53] Zhang Z C, Yuan C Z, Shen S et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes[J]. Npj Quantum Information, 7, 123(2021).
[54] He Y M, He Y, Wei Y J et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 8, 213-217(2013).
[55] Yuan C Z, Zhou Q. Experimental progress on quantum communication with quantum dot based devices[M]. ∥Yu P, Wang Z. Quantum dot optoelectronic devices. Lecture notes in nanoscale science and technology. Cham: Springer, 27, 135-173(2020).
[56] Press D, Ladd T D, Zhang B Y et al[J]. Complete quantum control of a single quantum dot spin using ultrafast optical pulses Nature, 456, 218-221(2008).
Get Citation
Copy Citation Text
Boyu Peng, Chenzhi Yuan, Ruiming Zhang, Si Shen, Zichang Zhang, Jiarui Li, Yi Lin, Guangwei Deng, You Wang, Haizhi Song, Qiang Zhou. Progress in Gain-Switched Semiconductor Lasers for Quantum Communication[J]. Acta Optica Sinica, 2022, 42(3): 0327007
Category: Quantum Optics
Received: Nov. 8, 2021
Accepted: Dec. 23, 2021
Published Online: Jan. 24, 2022
The Author Email: Chenzhi Yuan (c.z.yuan@uestc.edu.cn), Qiang Zhou (zhouqiang@uestc.edu.cn)