OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 66(2022)
Synthesis of MoS2 and Its Heterostructures for Optoelectronic Applications
[3] [3] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
[4] [4] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[5] [5] Maitra U, Gupta U, De M, et al. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene[J]. Angewandte Chemie International Edition, 2013, 52(49): 13057-13061.
[7] [7] Gan X, Lei D, Ye R, et al. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering[J]. Nano Research, 2021, 14(6): 2003-2022.
[8] [8] He Z, Que W. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction[J]. Applied Materials Today, 2016, 3: 23-56.
[9] [9] Benavente E, Santa Ana M A, Mendizábal F, et al. Intercalation chemistry of molybdenum disulfide[J]. Coordination Chemistry Reviews, 2002, 224(1-2): 87-109.
[10] [10] Zhou W, Yin Z, Du Y, et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities[J]. Small, 2013, 9(1): 140-147.
[11] [11] Wang S, Guan B Y, Yu L, et al. Rational design of three-layered TiO2@ Carbon@ MoS2 hierarchical nanotubes for enhanced lithium storage[J]. Advanced Materials, 2017, 29(37): 1702724.
[12] [12] Zhang Y, Guo S, Xin X, et al. Plasmonic MoO2 as co-catalyst of MoS2 for enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 504: 144291.
[13] [13] Liu C, Wang L, Tang Y, et al. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2015, 164: 1-9.
[14] [14] Zhang H, Wei J, Yan Y, et al. Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application[J]. Journal of Power Sources, 2020, 450: 227616.
[15] [15] Yang L, Zhong D, Zhang J, et al. Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(7): 6979-6985.
[16] [16] Li X, Guo S, Kan C, et al. Au Multimer@ MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect[J]. Nano Energy, 2016, 30: 549-558.
[17] [17] Najmaei S, Mlayah A, Arbouet A, et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2–Au nanostructures[J]. ACS Nano, 2014, 8(12): 12682-12689.
[18] [18] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.
[19] [19] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
[20] [20] Chen C, Xie X, Anasori B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(7): 1846-1850.
[21] [21] Zhang Y, Mu Z, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707578.
[22] [22] Guo Z, Zhou W, Arshad N, et al. Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs[J]. Carbon, 2022, 186: 19-27.
[23] [23] Wang X, Li H, Li H, et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance[J]. Advanced Functional Materials, 2020, 30(15): 0190302.
[24] [24] Jiang H, Ren D, Wang H, et al. 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage[J]. Advanced Materials, 2015, 27(24): 3687-3695.
[25] [25] Wang Y, Qu Q, Li G, et al. 3D interconnected and multiwalled carbon@ MoS2@ carbon hollow nanocables as outstanding anodes for Na‐Ion batteries[J]. Small, 2016, 12(43): 6033-6041.
[26] [26] Lee C, Ozden S, Tewari C S, et al. MoS2-Carbon nanotube porous 3D network for enhanced oxygen reduction reaction[J]. ChemSusChem, 2018, 11(17): 2960-2966.
[27] [27] Kibsgaard J, Chen Z, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature materials, 2012, 11(11): 963-969.
[28] [28] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274-10277.
[29] [29] Liu G, Robertson A W, Li M M J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature chemistry, 2017, 9(8): 810-816.
[30] [30] Ge J, Zhang D, Jin J, et al. Oxygen atoms substituting sulfur atoms of MoS2 to activate the basal plane and induce the phase transition for boosting hydrogen evolution[J]. Materials Today Energy, 2021, 22: 100854.
[31] [31] Chen R, Wang X, Gan Q, et al. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection[J]. Journal of Materials Chemistry A, 2019, 7(18): 11177-11185.
[32] [32] Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 13953-13958.
[33] [33] Ghim D, Jiang Q, Cao S, et al. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification[J]. Nano energy, 2018, 53: 949-957.
[34] [34] Li W, Tekell M C, Huang Y, et al. Synergistic high-rate solar steaming and mercury removal with MoS2/C@ polyurethane composite sponges[J]. Advanced Energy Materials, 2018, 8(32): 1802108
[35] [35] Cheng R, Wang F, Yin L, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures[J]. Nature Electronics, 2018, 1(6): 356-361.
[36] [36] Xiang R, Inoue T, Zheng Y, et al. One-dimensional van der Waals heterostructures[J]. Science, 2020, 367(6477): 537-542.
[37] [37] Xiang D, Liu T, Chen W. Fused computing and storage in a 2D transistor[J]. Nature nanotechnology, 2019, 14(7): 642-643.
[38] [38] Cheng R, Yin L, Wang F, et al. Van der Waals integration of 2D atomic crystals for advanced multifunctional devices[J]. Science Bulletin, 2019, 64(15): 1033-1035.
[39] [39] Pradhan D K, Kumari S, Puli V S, et al. Exploring phase transitions and magnetoelectric coupling of epitaxial asymmetric multilayer heterostructures[J]. Journal of Materials Chemistry C, 2020, 8(35): 12113-12122.
[40] [40] Liang S J, Cheng B, Cui X, et al. Van der Waals heterostructures for high‐performance device applications: challenges and opportunities[J]. Advanced Materials, 2020, 32(27): 1903800.
[41] [41] Long M, Wang Y, Wang P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS Nano, 2019, 13(2): 2511-2519.
[42] [42] Lee C H, Lee G H, Van Der Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature nanotechnology, 2014, 9(9): 676-681.
[43] [43] Yan Y, Zhai D, Liu Y, et al. Van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting[J]. ACS Nano, 2020, 14(1): 1185-1195.
[44] [44] Zhu J, Li W, Huang R, et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures[J]. Journal of the American Chemical Society, 2020, 142(38): 16276-16284.
[45] [45] Berweger S, Zhang H, Sahoo P K, et al. Spatially resolved persistent photoconductivity in MoS2–WS2 lateral heterostructures[J]. ACS Nano, 2020, 14(10): 14080-14090.
[46] [46] Lin P, Yang J. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics[J]. Journal of Alloys and Compounds, 2020, 842: 155890.
[47] [47] Ma H, Huang K, Wu R, et al. In‐plane epitaxial growth of 2D CoSe‐WSe2 metal‐semiconductor lateral heterostructures with improved WSe2 transistors performance[J]. InfoMat, 2021, 3(2): 222-228.
[48] [48] Zhang J, Boora M, Kaminski T, et al. Fano resonances from plasmon-exciton coupling in hetero-bilayer WSe2-WS2 on Au nanorod arrays[J]. Photonics and Nanostructures-Fundamentals and Applications, 2020, 41: 100783.
[49] [49] Enaldiev V V, Ferreira F, Magorrian S J, et al. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers[J]. 2D Materials, 2021, 8(2): 025030.
[50] [50] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353: 6298.
[51] [51] Guo J, Li S, He Z, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483: 1037-1043.
[52] [52] Guo J, Li S, He Z, et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483: 1037-1043.
[53] [53] Kwon S, Lee S Y, Choi S H, et al. Polarization-dependent light emission and charge creation in MoS2 monolayers on plasmonic Au nanogratings[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 44088-44093.
[54] [54] Hou C, Wang Y, Yang L, et al. Position sensitivity of optical nano-antenna arrays on optoelectronic devices[J]. Nano Energy, 2018, 53: 734-744.
Get Citation
Copy Citation Text
WANG Zhao-zhao, TAN Lei, XIAO Qi, LI Xiao-peng. Synthesis of MoS2 and Its Heterostructures for Optoelectronic Applications[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 66
Category:
Received: Dec. 30, 2021
Accepted: --
Published Online: Oct. 29, 2022
The Author Email:
CSTR:32186.14.