Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0500003(2023)
Research Progress of Integrated Radar-Communication Waveform Based on Linear Frequency Modulation
[1] Shi R, Zhang L, Bao J C. Correlation and integration of basic concepts and models for radar system and communication system[J]. Journal of Air Force Early Warning Academy, 34, 5-10(2020).
[2] Mishra K V, Bhavani Shankar M R, Koivunen V et al. Toward millimeter-wave joint radar communications: a signal processing perspective[J]. IEEE Signal Processing Magazine, 36, 100-114(2019).
[3] Hassanien A, Amin M G, Aboutanios E et al. Dual-function radar communication systems: a solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 36, 115-126(2019).
[4] Feng Z Y, Fang Z X, Wei Z Q et al. Joint radar and communication: a survey[J]. China Communications, 17, 1-27(2020).
[5] Liu F, Masouros C, Petropulu A P et al. Joint radar and communication design: applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 68, 3834-3862(2020).
[6] Zhang M Y[M]. Introduction of radar-electronic warfare-communication integration(2010).
[7] Ma D K, Kuang Y, Yang X Q. Key issues and status research of integrated reconnaissance, interference, detection and communications[J]. Journal of China Academy of Electronics and Information Technology, 11, 457-462(2016).
[8] Moo P W, DiFilippo D J. Multifunction RF systems for naval platforms[J]. Sensors, 18, 2076(2018).
[9] Xiao B, Huo K, Liu Y X. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 41, 739-750(2019).
[10] Liang X D, Li Q, Wang J et al. Joint wireless communication and radar sensing: review and future prospects[J]. Journal of Signal Processing, 36, 1615-1627(2020).
[11] Chiriyath A R, Paul B, Bliss D W. Radar-communications convergence: coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 3, 1-12(2017).
[12] Liu F, Yuan W J, Yuan J H et al. Radar-communication spectrum sharing and integration: overview and prospect[J]. Journal of Radars, 10, 467-484(2021).
[13] Tavik G C, Hilterbrick C L, Evins J B et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 53, 1009-1020(2005).
[14] van Rossum W L, de Wit J J M, Otten M P G et al. SMRF architecture concepts[J]. IEEE Aerospace and Electronic Systems Magazine, 26, 12-17(2011).
[15] Li L, Li G J, Li C Q. A communication system based on active phased-array radar[J]. Journal of China Academy of Electronics and Information Technology, 3, 131-135, 144(2008).
[16] Sturm C, Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 99, 1236-1259(2011).
[17] Takeda M, Hanada Y, Kohno R. Spread spectrum communication and ranging system between a roadside and a vehicle using interference canceler[J]. Electronics and Communications in Japan, 83, 83-92(2000).
[18] Jamil M, Zepernick H J, Pettersson M I. On integrated radar and communication systems using Oppermann sequences[C](2008).
[19] Li X B, Yang R J, Cheng W. The application of poly-phase pseudorandom sequence in integrated radar and communication[J]. Signal Processing, 28, 1543-1550(2012).
[20] Liu S H, Huang Z X. Design of integrated radar-communication signal based on spread spectrum[J]. Radar Science and Technology, 12, 69-75(2014).
[21] Sturm C, Zwick T, Wiesbeck W. An OFDM system concept for joint radar and communications operations[C](2009).
[22] Garmatyuk D, Schuerger J, Kauffman K. Multifunctional software-defined radar sensor and data communication system[J]. IEEE Sensors Journal, 11, 99-106(2011).
[23] Liu Y J, Liao G S, Yang Z W. Ambiguity function analysis of integrated radar and communication waveform based on OFDM[J]. Systems Engineering and Electronics, 38, 2008-2018(2016).
[24] Dokhanchi S H, Shankar M R B, Stifter T et al. OFDM-based automotive joint radar-communication system[C], 902-907(2018).
[25] Zhang Q Y, Zhang L R, Gu Y B et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi’an Jiaotong University, 53, 77-84(2019).
[26] Zhang F F. Research on implementation technologies of 5 GHz radar and communication integrated system based on OFDM[D](2020).
[27] Li X B, Yang R J, Cheng W et al. Application of a novel complementary signal to integrated radar and communication[J]. Systems Engineering and Electronics, 43, 693-699(2021).
[28] Chen B X[M]. Modern radar system analysis and design(2012).
[29] [M]. 电子战接收机与接收系统. 楼才义, 译(2016).
Poisel R A, Poisel R A[M]. Electronic warfare receivers and receiving systems. Lou C Y, Transl(2016).
[30] Roberton M, Brown E R. Integrated radar and communications based on chirped spread-spectrum techniques[C], 611-614(2003).
[31] Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 55, 1431-1437(2007).
[32] Hu T Z, Xie R, Liu J et al. Joint timing and frequency synchronization in LFM-MPSK based radar and communication integrated system[J]. Journal of Signal Processing, 36, 1687-1697(2020).
[33] Zhou Y, Yang H T, Gu Y B et al. Study on integrated radar and communication signal based on chirp-rate modulation[J]. Journal of University of Electronic Science and Technology of China, 46, 830-835(2017).
[34] Barrenechea P, Elferink F, Janssen J. FMCW radar with broadband communication capability[C], 130-133(2007).
[35] Zeng H, Ji L X, Li F et al. 16QAM-LFM waveform design for integrated radar and communication[J]. Journal on Communications, 41, 182-189(2020).
[36] Nowak M, Wicks M, Zhang Z P et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 31, 28-35(2016).
[37] Sun Y K, Chen X B, Cao C et al. Simulation of PD radar signal processing based on MSK-LFM[J]. Journal of China Academy of Electronics and Information Technology, 7, 370-373(2012).
[38] Chen X B, Wang X M, Cao C et al. Techniques analysis of radar-communication integrating waveform[J]. Modern Radar, 35, 56-59, 63(2013).
[39] Li X B, Yang R J, Cheng W. Integrated radar and communication based on Chirp[J]. Radar Science and Technology, 10, 180-186(2012).
[40] Yang C, Wang M, Zheng L et al. Dual function system with shared spectrum using FMCW[J]. IEEE Access, 6, 79026-79038(2018).
[41] Li X B, Yang R J, Cheng W. Integrated radar and communication based on multicarrier frequency modulation Chirp signal[J]. Journal of Electronics & Information Technology, 35, 406-412(2013).
[42] Liu B F, Chen B X. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics & Information Technology, 41, 801-808(2019).
[43] Zhao Y Z, Chen L Y, Zhang F B et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 10, 453-466(2021).
[44] Fei Y C, Su G C, Mi H et al[M]. The generating technology of wideband radar signals(2002).
[45] Zhang Y M. Anolog signal processing based on polarization-modulated photonic microwave phase shifting[D](2018).
[46] Capmany J, Mora J, Gasulla I et al. Microwave photonic signal processing[J]. Journal of Lightwave Technology, 31, 571-586(2013).
[47] Matthews P J. The role of photonics in next generation military systems[C], 15-16(2016).
[48] Pan S L, Zhang Y M. Microwave photonic radar and key technologies[J]. Science & Technology Review, 35, 36-52(2017).
[49] Kanno A, Kawanishi T. Broadband frequency-modulated continuous-wave signal generation by optical modulation technique[J]. Journal of Lightwave Technology, 32, 3566-3572(2014).
[50] Ridgway R W, Dohrman C L, Conway J A. Microwave photonics programs at DARPA[J]. Journal of Lightwave Technology, 32, 3428-3439(2014).
[51] Ghelfi P, Laghezza F, Scotti F et al. A fully photonics-based coherent radar system[J]. Nature, 507, 341-345(2014).
[52] Ghelfi P, Laghezza F, Scotti F et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 34, 500-507(2016).
[53] Zhang F Z, Pan S L. Microwave photonic signal generation for radar applications[J]. Journal of Data Acquisition and Processing, 29, 922-929(2014).
[54] Zou W W, Zhang H, Long X et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 6, 19786(2016).
[55] Cui Y J, Zou W W, Zhang S T et al. Scheme of the microwave photonic radar architecture based on mutual optical fiber dispersion[J]. Acta Photonica Sinica, 46, 1206005(2017).
[56] Li R M, Li W Z, Ding M L et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 25, 14334-14340(2017).
[57] Zhang F Z, Guo Q S, Wang Z Q et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 25, 16274-16281(2017).
[58] Li H, Wei Y F, Ji Y S et al. Generation and dechirping of linear frequency modulation signals[J]. Laser & Optoelectronics Progress, 58, 0306003(2021).
[59] Zhang F Z, Gao B D, Pan S L. Broadband array radar based on microwave photonic frequency multiplication and de-chirp receiving(Invited)[J]. Infrared and Laser Engineering, 50, 20211051(2021).
[60] Pan S L, Zhu D. A microwave photonic cognitive radar[J]. Radar Science and Technology, 19, 117-129(2021).
[61] McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper[J]. Optics Letters, 27, 1345-1347(2002).
[62] Khan M H, Shen H, Xuan Y et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper[J]. Nature Photonics, 4, 117-122(2010).
[63] Zhang J J, Coutinho O L, Yao J P. A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 1947-1953(2016).
[64] Kawanishi T, Sakamoto T, Kanno A. Ultra wideband frequency chirp millimetre-wave signal generation using electro-optic modulation[C](2011).
[65] Li W Z, Yao J P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. Journal of Lightwave Technology, 32, 3573-3579(2014).
[66] Zhang Y M, Ye X W, Guo Q S et al. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation[J]. Journal of Lightwave Technology, 35, 1821-1829(2017).
[67] Hao T F, Cen Q Z, Dai Y T et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 9, 1839(2018).
[68] Zhou P, Zhang F Z, Pan S L. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator[J]. Journal of Lightwave Technology, 36, 3927-3934(2018).
[69] Liu R R, Du P F, Luo X et al. Method of generating LCMW with large TBWP based on frequency-sweeping optoelectronic oscillation[J]. Journal of Air Force Early Warning Academy, 33, 253-256(2019).
[70] Hao T F, Shi N N, Li W et al. Multi-band linearly frequency modulated Fourier domain mode-locked optoelectronic oscillator[J]. Journal of Applied Sciences, 38, 640-646(2020).
[71] Zhu D, Yao J P. Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator[J]. IEEE Photonics Technology Letters, 27, 1410-1413(2015).
[72] Li X, Zhao S H, Zhu Z H et al. Photonic generation of frequency and bandwidth multiplying dual-chirp microwave waveform[J]. IEEE Photonics Journal, 9, 7104014(2017).
[73] Zhang K, Zhao S H, Wen A J et al. Anti-chromatic dispersion transmission of frequency and bandwidth-doubling dual-chirp microwave waveform[J]. Optics Letters, 44, 4004-4007(2019).
[74] Zhang K, Zhao S H, Lin T et al. Photonic generation of multi-frequency dual-chirp microwave waveform with multiplying bandwidth[J]. Results in Physics, 13, 102226(2019).
[75] Zhang K, Zhao S H, Li X et al. Photonic approach to dual-band dual-chirp microwave waveform generation with multiplying central frequency and bandwidth[J]. Optics Communications, 437, 17-26(2019).
[76] Li X, Zhao S H, Zhang K et al. Dual-chirp waveform generation and its TBWP improvement based on polarization modulation and phase coding[J]. Optics Communications, 463, 125413(2020).
[77] Zhang K, Zhao S H, Lin T et al. Frequency-multiplying dual-chirp microwave waveform generation based on a dual-drive DP-MZM[J]. Space Electronic Technology, 17, 109-116(2020).
[78] Hao T F, Tang J, Shi N N et al. Dual-chirp Fourier domain mode-locked optoelectronic oscillator[J]. Optics Letters, 44, 1912-1915(2019).
[79] Zhang T H, Qiu Q, Su J et al. Optical analog-to-digital conversion technology and its recent progress[J]. Laser & Optoelectronics Progress, 53, 120003(2016).
[80] Mahjoubfar A, Churkin D V, Barland S et al. Time stretch and its applications[J]. Nature Photonics, 11, 341-351(2017).
[81] Qian A Q, Zou W W, Wu G L et al. Design and implementation of multi-channel photonic time-stretch analog-to-digital converter[J]. Chinese Journal of Lasers, 42, 0505001(2015).
[82] Li Y H, Dezfooliyan A, Weiner A M. Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures[J]. Journal of Lightwave Technology, 32, 3580-3587(2014).
[83] Rashidinejad A, Leaird D E, Weiner A M. Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability[J]. Optics Express, 23, 12265-12273(2015).
[84] Deng H, Zhang J J, Chen X et al. Photonic generation of a phase-coded chirp microwave waveform with increased TBWP[J]. IEEE Photonics Technology Letters, 29, 1420-1423(2017).
[85] Melo S, Pinna S, Bogoni A et al. Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver[C](2016).
[86] Nie H J, Hou W D, Zhang F Z et al. Research on technology of photonics-based integrated communication and radar system[J]. Aerospace Electronic Warfare, 36, 34-39(2020).
[87] Li X, Zhao S H, Wang G D et al. Generation and detection of a phase modulated linearly chirped waveform using an orthogonally polarized optical signal[C], M4A.349(2020).
[88] Li X, Zhao S H, Wang G D. Photonics generation of microwave linearly chirped signal with amplitude and phase modulation capability[J]. Journal of Modern Optics, 68, 339-349(2021).
[89] Li X, Zhao S H, Wang G D et al. Photonic generation and application of a bandwidth multiplied linearly chirped signal with phase modulation capability[J]. IEEE Access, 9, 82618-82629(2021).
[90] Zhou Y X, Zhao S H, Li X et al. Chirp modulated and frequency multiplied LFM for communication radar integration[J]. Chinese Journal of Lasers, 49, 0706001(2022).
Get Citation
Copy Citation Text
Xuan Li, Yixiao Zhou, Shanghong Zhao, Guodong Wang, Zihang Zhu, He Li, Longqiang Yu. Research Progress of Integrated Radar-Communication Waveform Based on Linear Frequency Modulation[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500003
Category: Reviews
Received: Dec. 6, 2021
Accepted: Jan. 18, 2022
Published Online: Feb. 28, 2023
The Author Email: Xuan Li (lixuankgd@163.com), Shanghong Zhao (zhaoshangh@aliyun.com)