Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0500003(2023)

Research Progress of Integrated Radar-Communication Waveform Based on Linear Frequency Modulation

Xuan Li*, Yixiao Zhou, Shanghong Zhao**, Guodong Wang, Zihang Zhu, He Li, and Longqiang Yu
Author Affiliations
  • Office of Communication System, Information and Navigation School, Air Force Engineering University, Xi'an 710077, Shaanxi, China
  • show less
    References(91)

    [1] Shi R, Zhang L, Bao J C. Correlation and integration of basic concepts and models for radar system and communication system[J]. Journal of Air Force Early Warning Academy, 34, 5-10(2020).

    [2] Mishra K V, Bhavani Shankar M R, Koivunen V et al. Toward millimeter-wave joint radar communications: a signal processing perspective[J]. IEEE Signal Processing Magazine, 36, 100-114(2019).

    [3] Hassanien A, Amin M G, Aboutanios E et al. Dual-function radar communication systems: a solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 36, 115-126(2019).

    [4] Feng Z Y, Fang Z X, Wei Z Q et al. Joint radar and communication: a survey[J]. China Communications, 17, 1-27(2020).

    [5] Liu F, Masouros C, Petropulu A P et al. Joint radar and communication design: applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 68, 3834-3862(2020).

    [6] Zhang M Y[M]. Introduction of radar-electronic warfare-communication integration(2010).

    [7] Ma D K, Kuang Y, Yang X Q. Key issues and status research of integrated reconnaissance, interference, detection and communications[J]. Journal of China Academy of Electronics and Information Technology, 11, 457-462(2016).

    [8] Moo P W, DiFilippo D J. Multifunction RF systems for naval platforms[J]. Sensors, 18, 2076(2018).

    [9] Xiao B, Huo K, Liu Y X. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 41, 739-750(2019).

    [10] Liang X D, Li Q, Wang J et al. Joint wireless communication and radar sensing: review and future prospects[J]. Journal of Signal Processing, 36, 1615-1627(2020).

    [11] Chiriyath A R, Paul B, Bliss D W. Radar-communications convergence: coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 3, 1-12(2017).

    [12] Liu F, Yuan W J, Yuan J H et al. Radar-communication spectrum sharing and integration: overview and prospect[J]. Journal of Radars, 10, 467-484(2021).

    [13] Tavik G C, Hilterbrick C L, Evins J B et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 53, 1009-1020(2005).

    [14] van Rossum W L, de Wit J J M, Otten M P G et al. SMRF architecture concepts[J]. IEEE Aerospace and Electronic Systems Magazine, 26, 12-17(2011).

    [15] Li L, Li G J, Li C Q. A communication system based on active phased-array radar[J]. Journal of China Academy of Electronics and Information Technology, 3, 131-135, 144(2008).

    [16] Sturm C, Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 99, 1236-1259(2011).

    [17] Takeda M, Hanada Y, Kohno R. Spread spectrum communication and ranging system between a roadside and a vehicle using interference canceler[J]. Electronics and Communications in Japan, 83, 83-92(2000).

    [18] Jamil M, Zepernick H J, Pettersson M I. On integrated radar and communication systems using Oppermann sequences[C](2008).

    [19] Li X B, Yang R J, Cheng W. The application of poly-phase pseudorandom sequence in integrated radar and communication[J]. Signal Processing, 28, 1543-1550(2012).

    [20] Liu S H, Huang Z X. Design of integrated radar-communication signal based on spread spectrum[J]. Radar Science and Technology, 12, 69-75(2014).

    [21] Sturm C, Zwick T, Wiesbeck W. An OFDM system concept for joint radar and communications operations[C](2009).

    [22] Garmatyuk D, Schuerger J, Kauffman K. Multifunctional software-defined radar sensor and data communication system[J]. IEEE Sensors Journal, 11, 99-106(2011).

    [23] Liu Y J, Liao G S, Yang Z W. Ambiguity function analysis of integrated radar and communication waveform based on OFDM[J]. Systems Engineering and Electronics, 38, 2008-2018(2016).

    [24] Dokhanchi S H, Shankar M R B, Stifter T et al. OFDM-based automotive joint radar-communication system[C], 902-907(2018).

    [25] Zhang Q Y, Zhang L R, Gu Y B et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi’an Jiaotong University, 53, 77-84(2019).

    [26] Zhang F F. Research on implementation technologies of 5 GHz radar and communication integrated system based on OFDM[D](2020).

    [27] Li X B, Yang R J, Cheng W et al. Application of a novel complementary signal to integrated radar and communication[J]. Systems Engineering and Electronics, 43, 693-699(2021).

    [28] Chen B X[M]. Modern radar system analysis and design(2012).

    [29] [M]. 电子战接收机与接收系统. 楼才义, 译(2016).

         Poisel R A, Poisel R A[M]. Electronic warfare receivers and receiving systems. Lou C Y, Transl(2016).

    [30] Roberton M, Brown E R. Integrated radar and communications based on chirped spread-spectrum techniques[C], 611-614(2003).

    [31] Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 55, 1431-1437(2007).

    [32] Hu T Z, Xie R, Liu J et al. Joint timing and frequency synchronization in LFM-MPSK based radar and communication integrated system[J]. Journal of Signal Processing, 36, 1687-1697(2020).

    [33] Zhou Y, Yang H T, Gu Y B et al. Study on integrated radar and communication signal based on chirp-rate modulation[J]. Journal of University of Electronic Science and Technology of China, 46, 830-835(2017).

    [34] Barrenechea P, Elferink F, Janssen J. FMCW radar with broadband communication capability[C], 130-133(2007).

    [35] Zeng H, Ji L X, Li F et al. 16QAM-LFM waveform design for integrated radar and communication[J]. Journal on Communications, 41, 182-189(2020).

    [36] Nowak M, Wicks M, Zhang Z P et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 31, 28-35(2016).

    [37] Sun Y K, Chen X B, Cao C et al. Simulation of PD radar signal processing based on MSK-LFM[J]. Journal of China Academy of Electronics and Information Technology, 7, 370-373(2012).

    [38] Chen X B, Wang X M, Cao C et al. Techniques analysis of radar-communication integrating waveform[J]. Modern Radar, 35, 56-59, 63(2013).

    [39] Li X B, Yang R J, Cheng W. Integrated radar and communication based on Chirp[J]. Radar Science and Technology, 10, 180-186(2012).

    [40] Yang C, Wang M, Zheng L et al. Dual function system with shared spectrum using FMCW[J]. IEEE Access, 6, 79026-79038(2018).

    [41] Li X B, Yang R J, Cheng W. Integrated radar and communication based on multicarrier frequency modulation Chirp signal[J]. Journal of Electronics & Information Technology, 35, 406-412(2013).

    [42] Liu B F, Chen B X. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics & Information Technology, 41, 801-808(2019).

    [43] Zhao Y Z, Chen L Y, Zhang F B et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 10, 453-466(2021).

    [44] Fei Y C, Su G C, Mi H et al[M]. The generating technology of wideband radar signals(2002).

    [45] Zhang Y M. Anolog signal processing based on polarization-modulated photonic microwave phase shifting[D](2018).

    [46] Capmany J, Mora J, Gasulla I et al. Microwave photonic signal processing[J]. Journal of Lightwave Technology, 31, 571-586(2013).

    [47] Matthews P J. The role of photonics in next generation military systems[C], 15-16(2016).

    [48] Pan S L, Zhang Y M. Microwave photonic radar and key technologies[J]. Science & Technology Review, 35, 36-52(2017).

    [49] Kanno A, Kawanishi T. Broadband frequency-modulated continuous-wave signal generation by optical modulation technique[J]. Journal of Lightwave Technology, 32, 3566-3572(2014).

    [50] Ridgway R W, Dohrman C L, Conway J A. Microwave photonics programs at DARPA[J]. Journal of Lightwave Technology, 32, 3428-3439(2014).

    [51] Ghelfi P, Laghezza F, Scotti F et al. A fully photonics-based coherent radar system[J]. Nature, 507, 341-345(2014).

    [52] Ghelfi P, Laghezza F, Scotti F et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 34, 500-507(2016).

    [53] Zhang F Z, Pan S L. Microwave photonic signal generation for radar applications[J]. Journal of Data Acquisition and Processing, 29, 922-929(2014).

    [54] Zou W W, Zhang H, Long X et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 6, 19786(2016).

    [55] Cui Y J, Zou W W, Zhang S T et al. Scheme of the microwave photonic radar architecture based on mutual optical fiber dispersion[J]. Acta Photonica Sinica, 46, 1206005(2017).

    [56] Li R M, Li W Z, Ding M L et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 25, 14334-14340(2017).

    [57] Zhang F Z, Guo Q S, Wang Z Q et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 25, 16274-16281(2017).

    [58] Li H, Wei Y F, Ji Y S et al. Generation and dechirping of linear frequency modulation signals[J]. Laser & Optoelectronics Progress, 58, 0306003(2021).

    [59] Zhang F Z, Gao B D, Pan S L. Broadband array radar based on microwave photonic frequency multiplication and de-chirp receiving(Invited)[J]. Infrared and Laser Engineering, 50, 20211051(2021).

    [60] Pan S L, Zhu D. A microwave photonic cognitive radar[J]. Radar Science and Technology, 19, 117-129(2021).

    [61] McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper[J]. Optics Letters, 27, 1345-1347(2002).

    [62] Khan M H, Shen H, Xuan Y et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper[J]. Nature Photonics, 4, 117-122(2010).

    [63] Zhang J J, Coutinho O L, Yao J P. A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 1947-1953(2016).

    [64] Kawanishi T, Sakamoto T, Kanno A. Ultra wideband frequency chirp millimetre-wave signal generation using electro-optic modulation[C](2011).

    [65] Li W Z, Yao J P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. Journal of Lightwave Technology, 32, 3573-3579(2014).

    [66] Zhang Y M, Ye X W, Guo Q S et al. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation[J]. Journal of Lightwave Technology, 35, 1821-1829(2017).

    [67] Hao T F, Cen Q Z, Dai Y T et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 9, 1839(2018).

    [68] Zhou P, Zhang F Z, Pan S L. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator[J]. Journal of Lightwave Technology, 36, 3927-3934(2018).

    [69] Liu R R, Du P F, Luo X et al. Method of generating LCMW with large TBWP based on frequency-sweeping optoelectronic oscillation[J]. Journal of Air Force Early Warning Academy, 33, 253-256(2019).

    [70] Hao T F, Shi N N, Li W et al. Multi-band linearly frequency modulated Fourier domain mode-locked optoelectronic oscillator[J]. Journal of Applied Sciences, 38, 640-646(2020).

    [71] Zhu D, Yao J P. Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator[J]. IEEE Photonics Technology Letters, 27, 1410-1413(2015).

    [72] Li X, Zhao S H, Zhu Z H et al. Photonic generation of frequency and bandwidth multiplying dual-chirp microwave waveform[J]. IEEE Photonics Journal, 9, 7104014(2017).

    [73] Zhang K, Zhao S H, Wen A J et al. Anti-chromatic dispersion transmission of frequency and bandwidth-doubling dual-chirp microwave waveform[J]. Optics Letters, 44, 4004-4007(2019).

    [74] Zhang K, Zhao S H, Lin T et al. Photonic generation of multi-frequency dual-chirp microwave waveform with multiplying bandwidth[J]. Results in Physics, 13, 102226(2019).

    [75] Zhang K, Zhao S H, Li X et al. Photonic approach to dual-band dual-chirp microwave waveform generation with multiplying central frequency and bandwidth[J]. Optics Communications, 437, 17-26(2019).

    [76] Li X, Zhao S H, Zhang K et al. Dual-chirp waveform generation and its TBWP improvement based on polarization modulation and phase coding[J]. Optics Communications, 463, 125413(2020).

    [77] Zhang K, Zhao S H, Lin T et al. Frequency-multiplying dual-chirp microwave waveform generation based on a dual-drive DP-MZM[J]. Space Electronic Technology, 17, 109-116(2020).

    [78] Hao T F, Tang J, Shi N N et al. Dual-chirp Fourier domain mode-locked optoelectronic oscillator[J]. Optics Letters, 44, 1912-1915(2019).

    [79] Zhang T H, Qiu Q, Su J et al. Optical analog-to-digital conversion technology and its recent progress[J]. Laser & Optoelectronics Progress, 53, 120003(2016).

    [80] Mahjoubfar A, Churkin D V, Barland S et al. Time stretch and its applications[J]. Nature Photonics, 11, 341-351(2017).

    [81] Qian A Q, Zou W W, Wu G L et al. Design and implementation of multi-channel photonic time-stretch analog-to-digital converter[J]. Chinese Journal of Lasers, 42, 0505001(2015).

    [82] Li Y H, Dezfooliyan A, Weiner A M. Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures[J]. Journal of Lightwave Technology, 32, 3580-3587(2014).

    [83] Rashidinejad A, Leaird D E, Weiner A M. Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability[J]. Optics Express, 23, 12265-12273(2015).

    [84] Deng H, Zhang J J, Chen X et al. Photonic generation of a phase-coded chirp microwave waveform with increased TBWP[J]. IEEE Photonics Technology Letters, 29, 1420-1423(2017).

    [85] Melo S, Pinna S, Bogoni A et al. Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver[C](2016).

    [86] Nie H J, Hou W D, Zhang F Z et al. Research on technology of photonics-based integrated communication and radar system[J]. Aerospace Electronic Warfare, 36, 34-39(2020).

    [87] Li X, Zhao S H, Wang G D et al. Generation and detection of a phase modulated linearly chirped waveform using an orthogonally polarized optical signal[C], M4A.349(2020).

    [88] Li X, Zhao S H, Wang G D. Photonics generation of microwave linearly chirped signal with amplitude and phase modulation capability[J]. Journal of Modern Optics, 68, 339-349(2021).

    [89] Li X, Zhao S H, Wang G D et al. Photonic generation and application of a bandwidth multiplied linearly chirped signal with phase modulation capability[J]. IEEE Access, 9, 82618-82629(2021).

    [90] Zhou Y X, Zhao S H, Li X et al. Chirp modulated and frequency multiplied LFM for communication radar integration[J]. Chinese Journal of Lasers, 49, 0706001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xuan Li, Yixiao Zhou, Shanghong Zhao, Guodong Wang, Zihang Zhu, He Li, Longqiang Yu. Research Progress of Integrated Radar-Communication Waveform Based on Linear Frequency Modulation[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 6, 2021

    Accepted: Jan. 18, 2022

    Published Online: Feb. 28, 2023

    The Author Email: Xuan Li (lixuankgd@163.com), Shanghong Zhao (zhaoshangh@aliyun.com)

    DOI:10.3788/LOP213152

    Topics