Journal of Quantum Optics, Volume. 25, Issue 2, 145(2019)
Multidimensional Data Reconciliation for Continuous-variable Quantum Key Distribution based on PEG Algorithm
[1] [1] Bennett C H,Brassard G.Quantum Cryptography:Public Key Distribution and Coin Tossing ☆[J].Theoretical Computer Science,1984,175:175-179.DOI:101016/j.tcs.201405025.
[2] [2] Van Assche G,Cardinal J,Cerf N J.Reconciliation of a Quantum-distributed Gaussian Key[J].Information Theory IEEE Transactions on,2002,50(2):394-400.DOI:101109/tit.2003822618.
[3] [3] Bai Z L,Yang S S,Li Y M.High-efficiency Reconciliation for Continuous Variable Quantum Key Distribution[J].Japanese Journal of Applied Physics,2017,56(4):DOI:107567/jjap.56044401.
[4] [4] Gallager R G.Low-density Parity-check Codes[C].1963:550.DOI:101007/0-306-47794-7_8.
[5] [5] Mackay D J C,Neal R M.Near Shannon Limit Performance of Low Density Parity Check Codes[J].Electronics Letters,2013,32(6):457-458.DOI:101049/el:19970362.
[6] [6] Peng H,Yang J,Sun L.Construction Method of QC-LDPC Codes with Big Girth for Fast Encoding[J].Computer Engineering,2018,44(1):128-133.DOI:103969/j.issn.1000-3428201801021.
[7] [7] Leverrier A,All,Eacute R,et al.Multidimensional Reconciliation for a Continuous-variable Quantum Key Distribution[C]∥IEEE International Symposium on Information Theory.2008:1020-1024.DOI:101109/ISIT.20084595141.
[9] [9] Asp H,Bengtsson B,Jensén P.Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation[J].Physical Review A,2011,84(6):-.DOI:101103/PhysRevA.84062317.
[10] [10] Miguel N,Antonio A.Security Bounds for Continuous Variables Quantum Key Distribution[J].Physical Review Letters,2004,94(2):020505.DOI:101103/PhysRevLett.94020505.
[11] [11] Margulis G A.Explicit Constructions of Graphs Without Short Cycles and Low Density Codes[J].Combinatorica,1982,2(1):71-78.DOI:101007/bf02579283.
[12] [12] Xiao H,Banihashemi A H.Improved Progressive-edge-growth (PEG) Construction of Irregular LDPC Codes[J].IEEE Communications Letters,2004,8(12):715-717.DOI:101109/LCOMM.2004839612.
[13] [13] Sipser M,Spielman D A.Expander Codes[J].Information Theory IEEE Transactions on,1996,42(6):1710-1722.DOI:101109/18556667.
[14] [14] Hu X Y,Eleftheriou E,Arnold D M.Progressive Edge-growth Tanner Graphs[C]∥Global Telecommunications Conference,2001.GLOBECOM '01.IEEE.2002:995-1001 vol.2.DOI:101109/GLOCOM.2001965567.
[15] [15] Hu X Y,Eleftheriou E,Arnold D M,et al.Regular and Irregular Progressive Edge-growth Tanner Graphs[J].IEEE Transactions on Information Theory,2005,51(1):386-398.DOI:101109/tit.2004839541.
[16] [16] Bai Z L,Wang X Y,Yang S S,et al.High-efficiency Gaussian Key Reconciliation in Continuous Variable Quantum Key Distribution[J].Science China Physics Mechanics & Astronomy,2016,59(1):614201-614201.DOI:101007/s11433-015-5702-7.
[17] [17] Luby M,Mitzenmacher M,Shokrollah A,et al.Analysis of Low Density Codes and Improved Designs using Irregular Graphs[C].1998:DOI:101145/276698276756.
[18] [18] Luby M G,Amin Shokrolloahi M,Mizenmacher M,et al.Improved Low-density Parity-check Codes using Irregular Graphs and Belief Propagation[C]∥IEEE International Symposium on Information Theory.1998:DOI:101109/ISIT.1998708706.
Get Citation
Copy Citation Text
XUE Zhe, GUO Da-bo, MA Shi-tu. Multidimensional Data Reconciliation for Continuous-variable Quantum Key Distribution based on PEG Algorithm[J]. Journal of Quantum Optics, 2019, 25(2): 145
Category:
Received: Dec. 6, 2018
Accepted: --
Published Online: Mar. 9, 2020
The Author Email: XUE Zhe (974597310@qq.com)