Shanghai Urban Planning Review, Volume. , Issue 2, 7(2025)
Spatiotemporal Intelligence and Refined Urban Governance in the New Era: Theories, Methods, and Application Approaches from an Urban Science Perspective
[2] [2] BATTY M. The new science of cities[M]. Cambridge: MIT Press, 2013.
[3] [3] GOODCHILD M F. Reimagining the history of GIS[J]. Annals of GIS, 2018, 24(1): 1-8.
[4] [4] CLAUDEL C, MATTHEW R. The city of tomorrow: sensors, networks, hackers, and the future of urban life[M]. New Haven: Yale University Press, 2016.
[5] [5] BATTY M, AXHAUSEN K W, GIANNOTTI F, et al. Smart cities of the future[J]. The European Physical Journal Special Topics, 2012, 214(1):481-518.
[6] [6] ZHANG H, GONG Z, THILL J C. A review on urban modelling for future smart cities[C]//MENG X, ZHANG X, GUO D, et al. Spatial data and intelligence. Singapore: Springer, 2024: 346-355.
[7] [7] BARTHELEMY M. The structure and dynamics of cities[M]. Cambridge: Cambridge University Press, 2016.
[8] [8] BETTENCOURT L M A. The origins of scaling in cities[J]. Science, 2013, 340(6139): 1438-1441.
[9] [9] LEGENDRE P, FORTIN M J. Spatial pattern and ecological analysis[J]. Vegetatio, 1989, 80(2): 107-138.
[10] [10] GOODCHILD M F. Twenty years of progress: GIScience in 2010[J]. Journal of Spatial Information Science, 2010(1): 3-20.
[11] [11] ZIPF G K. Human behavior and the principle of least effort: an introduction to human ecology[M]. Cambridge: Addison-Wesley, 1949.
[12] [12] VERBAVATZ V, BARTHELEMY M. The growth equation of cities[J]. Nature, 2020, 587(7834):397-401.
[13] [13] GONZLEZ M C, HIDALGO C A, BARABSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779-782.
[14] [14] SCHLPFER M, DONG L, O'KEEFFE K, et al. The universal visitation law of human mobility[J]. Nature, 2021, 593(7860): 522-527.
[15] [15] ALESSANDRETTI L, ASLAK U, LEHMANN S. The scales of human mobility[J]. Nature, 2020,587(7834): 402-407.
[16] [16] MAZZOLI M, MOLAS A, BASSOLAS A, et al. Field theory for recurrent mobility[J]. Nature Communications, 2019, 10: 1-11.
[17] [17] ALESSANDRETTI L, SAPIEZYNSKI P, SEKARA V, et al. Evidence for a conserved quantity in human mobility[J]. Nature Human Behaviour,2018, 2(7): 485-491.
[18] [18] XU F, LI Y, JIN D, et al. Emergence of urban growth patterns from human mobility behavior[J]. Nature Computational Science, 2021, 1(12): 791-800.
[19] [19] PEARL J. Causal inference in statistics: an overview[J]. Statistics Surveys, 2009, 3: 96-146.
[20] [20] ANGRIST J D, PISCHKE J S. The credibility revolution in empirical economics: how better research design is taking the con out of econometrics[J]. Journal of Economic Perspectives, 2010,24(2): 3-30.
[21] [21] SONG C, KOREN T, WANG P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010, 6(10): 818-823.
[22] [22] PAPPALARDO L, SIMINI F, RINZIVILLO S, et al. Returners and explorers dichotomy in human mobility[J]. Nature Communications, 2015, 6: 1-8.
[23] [23] SONG C, QU Z, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010,327(5968): 1018-1021.
[24] [24] BARTHELEMY M. Stochastic equations and cities[J]. Reports on Progress in Physics, 2023,86(8): 084001.
[25] [25] PENNY D, ZACHRESON C, FLETCHER R, et al. The demise of Angkor: systemic vulnerability of urban infrastructure to climatic variations[J]. Science Advances, 2018, 4(10): eaau4029.
[26] [26] GAO J, BARZEL B, BARABSI A-L. Universal resilience patterns in complex networks[J]. Nature,2016, 530: 307-312.
[27] [27] ZHAO J, LI D, SANHEDRAI H, et al. Spatiotemporal propagation of cascading overload failures in spatially embedded networks[J]. Nature Communications, 2016, 7: 3-8.
[28] [28] BROCKMANN D, HELBING D. The hidden geometry of complex, network-driven contagion phenomena[J]. Science, 2013, 342(6164): 1337-1342.
[29] [29] JI J, WANG J, JIANG Z, et al. STDEN: towards physics-guided neural networks for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4):4048-4056.
[30] [30] PAPADOPOULOS F, KITSAK M, SERRANO M , et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540.
[31] [31] SERRANO M , KRIOUKOV D, BOGU M. Self-similarity of complex networks and hidden metric spaces[J]. Physical Review Letters, 2008,100(7): 078701.
[32] [32] CROSBY H, DAMOULAS T, JARVIS S A. Embedding road networks and travel time into distance metrics for urban modelling[J]. International Journal of Geographical Information Science, 2019, 33(3): 512-536.
[34] [34] ZHENG M, GARCA-PREZ G, BOGU M, et al. Geometric renormalization of weighted networks[J]. Communications Physics, 2024, 7(1): 97.
[35] [35] LIU X, GONG L, GONG Y, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90.
[36] [36] ZHU D, HUANG Z, SHI L, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions[J]. International Journal of Geographical Information Science, 2018, 32(4):783-805.
[37] [37] CHAMI I, YING R, R C, et al. Hyperbolic graph convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2019,32(1): 1-20.
[38] [38] FOTHERINGHAM A S, CRESPO R, YAO J. Geographical and temporal weighted regression(GTWR)[J]. Geographical Analysis, 2015, 47(4):431-452.
[39] [39] KANG C, QIN K. Understanding operation behaviors of taxicabs in cities by matrix factorization[J]. Computers, Environment and Urban Systems, 2016, 60: 79-88.
[40] [40] TAN X, HUANG B, BATTY M, et al. The spatiotemporal scaling laws of urban population dynamics[J]. Nature Communications, 2025,16(1): 2881.
[41] [41] XU F, WANG Q, MORO E, et al. Using human mobility data to quantify experienced urban inequalities[J/OL]. Nature Human Behaviour, 2025. https://doi.org/10.1038/s41562-024-02079-0.
[42] [42] JIANG S, FERREIRA J, GONZALEZ M C. Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore[J]. IEEE Transactions on Big Data,2016, 3(2): 208-219.
[43] [43] LIU X, KANG C, GONG L, et al. Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science,2016, 30(2): 334-350.
[44] [44] VAZIFEH M M, ZHANG H, SANTI P, et al. Optimizing the deployment of electric vehicle charging stations using pervasive mobility data[J]. Transportation Research Part A: Policy and Practice, 2019, 121: 75-91.
[45] [45] SANTI P, RESTA G, SZELL M, et al. Quantifying the benefits of vehicle pooling with shareability networks[J]. Proceedings of the National Academy of Sciences, 2014, 111(37): 13290-13294.
[46] [46] JIANG H, XU L, LI J, et al. Enhancing urban resilience through spatial interaction-based city management zoning[J]. Annals of the American Association of Geographers, 2024, 114(6): 1310-1329.
[47] [47] XU L, TANG J, JIANG H, et al. MNCD-KE: a novel framework for simultaneous attribute- and interaction-based geographical regionalization[J]. International Journal of Geographical Information Science, 2024, 38(10): 2148-2182.
[48] [48] ALETA A, MARTN-CORRAL D, BAKKER M A, et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas[J]. Proceedings of the National Academy of Sciences, 2022, 119(26): 1-8.
[49] [49] HOSSEINI E, GHAFOOR K Z, SADIQ A S, et al. COVID-19 optimizer algorithm, modeling and controlling of coronavirus distribution process[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(10): 2765-2775.
[50] [50] BOGU M, KRIOUKOV D, CLAFFY K C. Navigability of complex networks[J]. Nature Physics, 2009, 5(1): 74-80.
[51] [51] PEREIRA G V, PARYCEK P, FALCO E, et al. Smart governance in the context of smart cities: a literature review[J]. Information Polity, 2018,23(2): 143-162.
[52] [52] SILVA B N, KHAN M, HAN K. Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities[J]. Sustainable Cities and Society, 2018, 38:697-713.
[53] [53] LIU Y, LIU X, GAO S, et al. Social sensing: a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3): 512-530.
[55] [55] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996,28(4): 281-298.
[56] [56] ZHU Y, YE Y, ZHANG S, et al. DiffTraj: generating GPS trajectory with diffusion probabilistic model[C]//Advances in Neural Information Processing Systems. 2023: 36.
[57] [57] GOODCHILD M F. Citizens as sensors: the world of volunteered geography[J]. Geo Journal, 2007,69(4): 211-221.
[58] [58] ZHU D, ZHANG F, WANG S, et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks[J]. Annals of the American Association of Geographers, 2020,110(2): 408-420.
[59] [59] TANG J, XU L, YU H, et al. A dataset of multilevel street-block divisions of 985 cities world-wide[J]. Scientific Data, 2025, 12(1): 456.
[60] [60] CHENG X, WANG Z, YANG X, et al. Multi-scale detection and interpretation of spatio-temporal anomalies of human activities represented by time-series[J]. Computers, Environment and Urban Systems, 2021, 88: 101627.
[61] [61] SI Y, XU L, PENG X, et al. Comparative diagnosis of the urban noise problem from infrastructural and social sensing approaches: a case study in Ningbo, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(5):2809.
[62] [62] LI C, HUANG Y, SHEN Y, et al. Spatiotemporal patterns and mechanisms of street vending from the social sensing perspective: a comparison between law-enforcement reported and residents complain events[J]. Cities, 2022, 124: 103597.
[63] [63] PENG X, LI Y, SI Y, et al. A social sensing approach for everyday urban problem-handling with the 12345-complaint hotline data[J]. Computers, Environment and Urban Systems, 2022, 94:101790.
[64] [64] KITCHIN R. The real-time city? Big data and smart urbanism[J]. GeoJournal, 2014, 79(1): 1-14.
[68] [68] LEFEBVRE H. The production of space[M]. Paris: ditions Anthropos, 1974.
Get Citation
Copy Citation Text
XU Liyan. Spatiotemporal Intelligence and Refined Urban Governance in the New Era: Theories, Methods, and Application Approaches from an Urban Science Perspective[J]. Shanghai Urban Planning Review, 2025, (2): 7
Category:
Received: --
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: