Laser & Optoelectronics Progress, Volume. 58, Issue 12, 1210013(2021)

An Object Detection Algorithm Based on Contextual Self-Calibration And Dual-Attention Mechanism

Junkai Luo, Baohua Zhang*, Yanyue Zhang, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li, and Ming Zhang
Author Affiliations
  • College of Information Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China
  • show less
    References(18)

    [1] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [2] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. //Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [3] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA, 6517-6525(2017).

    [6] Zhou X Y, Zhuo J C, Krähenbühl P et al. Bottom-up object detection by grouping extreme and center points[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 850-859(2019).

    [8] Tian Z, Shen C H, Chen H et al. FCOS: fully convolutional one-stage object detection[C]. //2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea (South), 9626-9635(2019).

    [9] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 936-944(2017).

    [10] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).

    [11] Ren Z J, Lin S Z, Li D W et al. Mask R-CNN object detection method based on improved feature pyramid[J]. Laser & Optoelectronics Progress, 56, 041502(2019).

    [14] Zhu X Z, Hu H, Lin S et al. Deformable ConvNets V2: more deformable, better results[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA, 9300-9308(2019).

    [17] Liu J J, Hou Q B, Cheng M M et al. Improving convolutional networks with self-calibrated convolutions[C]. //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA., 10093-10102(2020).

    [18] Li X, Wang W H, Hu X L et al. Selective kernel networks[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 510-519(2019).

    Tools

    Get Citation

    Copy Citation Text

    Junkai Luo, Baohua Zhang, Yanyue Zhang, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li, Ming Zhang. An Object Detection Algorithm Based on Contextual Self-Calibration And Dual-Attention Mechanism[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 9, 2020

    Accepted: Sep. 30, 2020

    Published Online: Jun. 18, 2021

    The Author Email: Zhang Baohua (zbh_wj2004@imust.cn)

    DOI:10.3788/LOP202158.1210013

    Topics