The Journal of Light Scattering, Volume. 37, Issue 2, 159(2025)

Synchrotron radiation small-angle x-ray scattering method: challenges and potential in dust explosion research

WU Haijuan1,2, LIU Jiahao1,3, JI Xiaolan1,4, and LI Zhihong1、*
Author Affiliations
  • 1Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
  • 2College of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • 4College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
  • show less
    References(59)

    [3] [3] Chen X F, Zhang H M, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(Part B): 905-911.

    [4] [4] Nie B S, Peng C, Wang K D, et al. Structure and Formation Mechanism of Methane Explosion Soot[J]. ACS Omega, 2020, 5(49): 31716-31723.

    [5] [5] Hong S M, Jiang E, Dysart A D, et al. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments[J]. Scientific reports, 2016, 6(1): 34590.

    [6] [6] Zhao J P, Tang G F, Wang Y C, et al. Explosive property and combustion kinetics of grain dust with different particle sizes[J]. Heliyon, 2020, 6(3): e03457.

    [7] [7] Park J, Kim H I, Jeong H, et al. Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways[J]. Autophagy, 2020, 16(6): 991-1006.

    [8] [8] Zhang S, Shi W X, Wang X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels[J]. Science, 2022, 377: 100-104.

    [9] [9] Liu X X, Chen D Y, Li J L, et al. Atomic-Level Matching Metal-Ion Organic Hybrid Interface to Enhance Energy Storage of Polymer-Based Composite Dielectrics[J]. Advanced Materials, 2024, 36(28): 2402239.

    [11] [11] Glatter O, Kratky O. Small angle X-ray scattering[M]. New York: Academic press, 1982.

    [12] [12] Osaka K, Matsumoto T, Taniguchi Y, et al. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8[J]. AIP Conference Proceedings, 2016, 1741(1): 030003.

    [15] [15] Cui B B, Wang M J, Li Z H, et al. A comprehensive investigation on the structural transformation and dissolution loss reaction of coke during gasification in CO2 atmosphere[J]. Fuel, 2024, 363: 130927.

    [16] [16] Cui B B, Wang M J, Li Z H, et al. Heating rate effects on the coking properties evolution for varying rank coals: Insights into volatiles reaction and mass transfer[J]. Fuel, 2024, 366: 131339.

    [17] [17] Cui B B, Wang M J, Zheng M, et al. In-situ study of the heating rate effects on covalent bonds conversion and pore/carbon microcrystal evolutions of coal molecule during coking[J]. Fuel, 2024, 364: 131091.

    [18] [18] Bagge-Hansen M, Lauderbach L, Hodgin R, et al. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene[J]. Journal of Applied Physics, 2015, 117: 245902.

    [19] [19] Rubtsov I A, Ten K A, Pruuel E R, et al. Study of the dynamics of nanoparticle sizes in trinitrotoluene detonation using the VEPP-4M synchrotron radiation[J]. Journal of Physics: Conference Series, 2016, 774: 012071.

    [20] [20] Rubtsov I A, Ten K A, Pruuel E R, et al. Methods to restore the dynamics of carbon condensation during the detonation of high explosives[J]. Journal of Physics: Conference Series, 2019, 1147: 012038.

    [21] [21] Wu H J, Chen R C, Li Z H. Optimization of sample thickness for small angle X-ray scattering (SAXS)[J]. Instrumentation Science & Technology, 2022, 51(1): 84-98.

    [22] [22] Wu H J, Li W M, Sun Y F, et al. Preliminary development of a dust explosion equipment for time-resolved SAXS experiment with synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2024, 549: 165265.

    [23] [23] Wu H J, Li Z H. A new dual-thickness semi-transparent beamstop for small-angle X-ray scattering[J]. Journal of Synchrotron Radiation, 2024, 31(5): 1197-1208.

    [24] [24] Watkins E B, Velizhanin K A, Dattelbaum D M, et al. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB) -Based Explosive PBX 9502[J]. The Journal of Physical Chemistry C, 2017, 121(41): 23129-23140.

    [29] [29] Castellanos D, Carreto-Vazquez V H, Mashug C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust[J]. Powder Technology, 2014, 254: 331-337.

    [30] [30] Zhang H M, Chen X F, Zhang Y, et al. Effects of particle size on flame structures through corn starch dust explosions[J]. Journal of loss prevention in the process industries, 2017, 50(Part A): 7-14.

    [31] [31] Vianna S S V, Cant R S. Modified porosity approach and laminar flamelet modelling for advanced simulation of accidental explosions[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(1): 3-14.

    [32] [32] Zhang J S, Xu P H, Sun L H, et al. Factors influencing and a statistical method for describing dust explosion parameters: A review[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 386-401.

    [33] [33] Li Q Z, Wang K, Zheng Y Y, et al. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust[J]. Powder Technology, 2016, 292: 290-297.

    [34] [34] Yuan C M, Amyotte P R, Hossain M N, et al. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder[J]. Journal of Hazardous Materials, 2014, 275: 1-9.

    [35] [35] Zhang X Y, Yu J L, Gao W, et al. Effects of particle size distributions on PMMA dust flame propagation behaviors[J]. Powder Technology, 2017, 317: 197-208.

    [36] [36] Hong S, Liu Z T, Zhao E L, et al. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 382-394.

    [37] [37] Tomaszewski P, Yu S, Borg M, et al. Machine learning-assisted analysis of small angle X-ray scattering[J]. IEEE. Swedish Workshop on Data Science (SweDS), 2021.

    [38] [38] Lu K L, Chen X K, Luo Z M, et al. The inhibiting effects of sodium carbonate on coal dust deflagration based on thermal methods[J]. Fuel, 2022, 315: 123122.

    [39] [39] Huang C Y, Chen X F, Yuan B H, et al. Suppression of wood dust explosion by ultrafine magnesium hydroxide[J]. Journal of Hazardous Materials, 2019, 378: 120723.

    [40] [40] Sepideh H, Maarten V, Frederik N, et al. Flame propagation and flow field measurements in a Hartmann dust explosion tube[J]. Powder Technology, 2018, 323: 346-356.

    [41] [41] Janes A, Chaineaux J, Carson D, et al. MIKE 3 versus HARTMANN apparatus: comparison of measured minimum ignition energy (MIE)[J]. Journal of hazardous materials, 2008, 152(1): 32-39.

    [42] [42] Hosseinzadeh S, Berghmans J, Degreve J, et al. A model for the minimum ignition energy of dust clouds[J]. Process Safety and Environmental Protection, 2019, 121: 43-49.

    [43] [43] Li Q Z, Lin B Q, Li W X, et al. Explosion characteristics of nano-aluminum powder-air mixtures in 20 L spherical vessels[J]. Powder Technology, 2011, 212(2): 303-309.

    [44] [44] Krietsch A, Scheid M, Schmidt M, et al. Explosion behaviour of metallic nano powders[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 237-243.

    [45] [45] Manju M. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1106-1112.

    [46] [46] Medina C, MacCoitir B, Sattar H, et al. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1 m3 dust explosion equipment[J]. Fuel, 2015, 151(1): 91-101.

    [47] [47] Proust Ch, Accorsi A, Dupont L. Measuring the violence of dust explosions with the “20 L sphere” and with the standard “ISO 1 m3 vessel”: systematic comparison and analysis of the discrepancies[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4-6): 599-606.

    [48] [48] Li L F, Hu Z C, Liang J S, et al. Suitability of electrostatic ignition to determine the explosive characteristics of different types of dust in the 5-L explosion vessel[J]. Powder Technology, 2022, 407: 117648.

    [49] [49] Huang C, Bloching M, Lipatnikov A N. A vented corn starch dust explosion in an 11.5 m3 vessel: experimental and numerical study[J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104707.

    [51] [51] Clement C, Frederic H, Pierre L, et al. Visualization of aluminum dust flame propagation in a square-section tube: comparison of schlieren, shadowgraphy and direct visualization techniques[J]. Journal of Visualization, 2020, 23(5): 885-894.

    [52] [52] Gao W, Mogi T, Yu J L, et al. Flame propagation mechanisms in dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 186-194.

    [56] [56] Krazinski J L, Buckius R O, Krier H. Coal dust flames: A review and development of a model for flame propagation[J]. Progress in Energy and Combustion Science, 1979, 5(1): 31-71.

    [57] [57] Benedetto A D, Russo P, Amyotte P. Modelling the effect of particle size on dust explosions[J]. Chemical Engineering Science, 2010, 65(2): 772-779.

    [58] [58] Khan A U, Salman S, Muhammad K, et al. Modelling coal dust explosibility of khyber Pakhtunkhwa coal using random forest algorithm[J]. Energies, 2022, 15(9): 3169.

    [59] [59] Dastidar A G, Amyotte P R, Pegg M J. Factors influencing the suppression of coal dust explosions[J]. Fuel, 1997, 76(7): 663-670.

    [60] [60] Glatter O, Kratky O. Small angle X-ray scattering[M]. New York: Academic Press, 1982.

    [62] [62] Koch M H, Vachette P, Svergun D I. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution[J]. Quarterly Reviews of Biophysics. 2003, 36(2): 147-227.

    [63] [63] Tsakanov V M. Synchrotron Light Facilities and Applications in Life Sciences. Paper presented at the Biomarkers of Radiation in the Environment[J]. Springer Netherlands, 2022.

    [64] [64] Brosey C A, Tainer J A. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology[J]. Journal of Current Opinion in Structural Biology, 2019, 58: 197-213.

    [65] [65] Polizzi S, Spinozzi F. Small Angle X-Ray Scattering (SAXS) with Synchrotron Radiation Sources[J]. Synchrotron Radiation: Basics, Methods and Applications, 2015, 337-359.

    [66] [66] Jeffries C M, Ilavsky J, Martel A, et al. Small-angle X-ray and neutron scattering[J]. Nature Reviews Methods Primers, 2021, 1(1): 70.

    [67] [67] Jiao Y, Xu G, Cui X B, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618.

    [68] [68] Li Z H, Jia Q J, Li M. Conceptual design of a simple small angle X-ray scattering (SAXS) beamline[J]. Instrumentation Science & Technology, 2021, 49(5): 560-570.

    [69] [69] Broennimann Ch, Eikenberry E F, Henrich B, et al. The PILATUS 1M detector[J]. Journal of Synchrotron Radiation, 2006, 13: 120-130.

    [70] [70] Kishimoto S, Mitsui T, Haruki R, et al. 64-and 128-pixel Si-APD linear array X-ray detectors with 0.5 ns time resolution[J]. AIP Conference Proceedings, 2019, 2054(1): 060068.

    [71] [71] Pauwels K, Douissard P A. Indirect X-ray detectors with single-photon sensitivity[J]. Journal of Synchrotron Radiation, 2022, 29(6): 1394-1406.

    [72] [72] Lyngs J, Pedersen J S. A high-flux automated laboratory small-angle X-ray scattering instrument optimized for solution scattering[J]. Journal of Applied Crystallography, 2021, 54: 295-305.

    [73] [73] Fan Y Q, Chen R C, Shang X X, et al. Absolute intensity calibration of samples at variable sample to detector distances in small angle X-ray scattering (SAXS)[J]. Instrumentation Science & Technology, 2024, 52(6): 702-710.

    Tools

    Get Citation

    Copy Citation Text

    WU Haijuan, LIU Jiahao, JI Xiaolan, LI Zhihong. Synchrotron radiation small-angle x-ray scattering method: challenges and potential in dust explosion research[J]. The Journal of Light Scattering, 2025, 37(2): 159

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2025

    Accepted: Jul. 31, 2025

    Published Online: Jul. 31, 2025

    The Author Email: LI Zhihong (lzh@ihep.ac.cn)

    DOI:10.13883/j.issn1004-5929.202502002

    Topics