Infrared Technology, Volume. 46, Issue 9, 1015(2024)
Lightweight Underwater Target Detection Algorithm Based on YOLOv8
[1] [1] SHEN Linghao, XIA Haisheng, ZHANG Xun, et al. U2PNet: an unsupervised underwater image-restoration network using polarization[J]. IEEE Transactions on Cybernetics, 2024: 1-14. Doi: 10.1109/TCYB. 2024.3365693.
[2] [2] Yeh C H, LIN C H, KANG L W, et al. Lightweight deep neural network for joint learning of underwater object detection and color conversion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(11): 6129-6143.
[4] [4] SHEN L, Reda M, ZHANG X, et al. Polarization-driven solution for mitigating scattering and uneven illumination in underwater imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4202615.
[5] [5] XU S, ZHANG M, SONG W, et al. A systematic review and analysis of deep learning-based underwater object detection[J]. Neurocomputing, 2023, 527: 204-232.
[6] [6] REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[7] [7] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV, 2016: 21-37.
[8] [8] WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[9] [9] ZENG L, SUN B, ZHU D. Underwater target detection based on Faster R-CNN and adversarial occlusion network[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104190.
[10] [10] SONG P, LI P, DAI L, et al. Boosting R-CNN: reweighting R-CNN samples by RPN’s error for underwater object detection[J]. Neurocomputing, 2023, 530: 150-164.
[11] [11] YU G, CAI R, SU J, et al. U-YOLOv7: a network for underwater organism detection[J]. Ecological Informatics, 2023, 75: 102108.
[12] [12] HUA X, CUI X, XU X, et al. Underwater object detection algorithm based on feature enhancement and progressive dynamic aggregation strategy[J]. Pattern Recognition, 2023, 139: 109511.
[13] [13] XU X, LIU Y, LYU L, et al. MAD-YOLO: a quantitative detection algorithm for dense small-scale marine benthos[J]. Ecological Informatics, 2023, 75: 102022.
[14] [14] Terven J, Cordova-Esparza D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arxiv preprint arxiv:2304.00501, 2023.
[15] [15] Al Muksit A, Hasan F, Emon M F H B, et al. YOLO-Fish: a robust fish detection model to detect fish in realistic underwater environment[J]. Ecological Informatics, 2022, 72: 101847.
[16] [16] CHEN L, ZHENG M, DUAN S, et al. Underwater target recognition based on improved YOLOv4 neural network[J]. Electronics, 2021, 10(14): 1634.
[17] [17] LIU P, QIAN W, WANG Y. YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection[J]. Ecological Informatics, 2024, 79: 102401.
[18] [18] YU G, CAI R, SU J, et al. U-YOLOv7: a network for underwater organism detection[J]. Ecological Informatics, 2023, 75: 102108.
[19] [19] Fayaz S, Parah S A, Qureshi G J, et al. Intelligent underwater object detection and image restoration for autonomous underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1726-1735.
[20] [20] Talaat F M, Zain Eldin H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 2023, 35(28): 20939-20954.
[21] [21] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[22] [22] LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
[23] [23] LIN T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[24] [24] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[25] [25] ZHANG X, LIU C, YANG D, et al. Rfaconv: Innovating spatital attention and standard convolutional operation[J]. arxiv preprint arxiv:2304.03198, 2023.
[26] [26] Ioannou Y, Robertson D, Cipolla R, et al. Deep roots: improving CNN efficiency with hierarchical filter groups[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1231-1240.
[27] [27] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[28] [28] SUN Y, ZHENG W, DU X, et al. Underwater small target detection based on YOLOX combined with MobileViT and double coordinate attention[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1178.
Get Citation
Copy Citation Text
LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology, 2024, 46(9): 1015