Journal of Optoelectronics · Laser, Volume. 35, Issue 8, 817(2024)

Lane line detection method based on ERFNet

XUE Xiaoqiang1, YI Chun1, YANG Xiaoyong1, WANG Zhongqiang1, and WANG Yalong2、*
Author Affiliations
  • 1Shaanxi Xiaobaodang Mining Co., Ltd, Yulin, Shaanxi 719000, China
  • 2Dawning Information Industry Co., Ltd, Tianjin 300384, China
  • show less
    References(11)

    [1] [1] BERTOZZI M, BROGGI A. GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection[J]. IEEE Transactions on Image Processing. 1998, 7(1): 62-81.

    [3] [3] RAHMDEL P S, SHI D, COMLEY R. Lane detection using Fourier-based line detector[C]//2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), August 4-7, 2013, Columbus, OH, USA. New York: IEEE, 2013: 1282-1285.

    [4] [4] LOW C Y, ZAMZURI H, MAZLAN S A. Simple robust road lane detection algorithm[C]//2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), June 3-5, 2014. Kuala Lumpur, Malaysia. New York: IEEE, 2014: 1-4.

    [6] [6] NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]//2018 IEEE Intelligent Vehicles Symposium (IV), June 26-30, 2018, Changshu, China. New York: IEEE, 2018:286-291.

    [7] [7] LI H, XIONG P, FAN H, et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019, 9514-9523.

    [8] [8] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 1800-1807.

    [10] [10] MUTHALAGU R, BOLIMERA A, KALAICHELVI V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers and Electrical Engineering, 2020, 85: 106653.

    [11] [11] COMANICIU D, MEER P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(5): 603-619.

    [12] [12] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 39(12): 2481-2495.

    [13] [13] CHEN L, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets atrous convolution and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019, 40(4): 834-848.

    [14] [14] CHEN L C, ZHU Y K, George P, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//2018 European Conference on Computer Vision, September 8-14, 2018, Munich, Germany. Berlin: Springer, 2018: 833-851.

    Tools

    Get Citation

    Copy Citation Text

    XUE Xiaoqiang, YI Chun, YANG Xiaoyong, WANG Zhongqiang, WANG Yalong. Lane line detection method based on ERFNet[J]. Journal of Optoelectronics · Laser, 2024, 35(8): 817

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 14, 2023

    Accepted: Dec. 13, 2024

    Published Online: Dec. 13, 2024

    The Author Email: WANG Yalong (w597672534@163.com)

    DOI:10.16136/j.joel.2024.08.0376

    Topics