Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2211001(2022)
Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis
Fig. 1. Schematic diagram of principal component analysis (PCA) in case of two-dimensional input
Fig. 4. Initial posture of point cloud. (a) Query point cloud; (b) reference point cloud; (c) relative position relationship between reference point cloud (lower left quarter) and query point cloud (upper right corner)
Fig. 5. Simulation result graph of ICP algorithm. (a) Iteration error; (b) registration error; (c) registration result
Fig. 6. Decentralized point cloud image. (a) Rough initial value; (b) accurate initial value
Fig. 7. Rough initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
Fig. 8. Accurate initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
Fig. 9. Top three principal components of point cloud. (a) Reference point cloud; (b) query point cloud
Fig. 10. PCA preprocessing registration results. (a) Iteration error; (b) registration error; (c) registration result
Fig. 11. PCA iterative registration results. (a) Iteration error; (b) registration error; (c) registration result
Fig. 12. PCA iteration+rough initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
Fig. 13. PCA iteration+accurate initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
|
|
Get Citation
Copy Citation Text
Fengyuan Shi, Chunming Zhang, Lihui Jiang, Qi Zhou, Di Pan. Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2211001
Category: Imaging Systems
Received: May. 19, 2021
Accepted: Jul. 7, 2021
Published Online: Oct. 12, 2022
The Author Email: Chunming Zhang (956934060@qq.com)