Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2211001(2022)

Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis

Fengyuan Shi1,2, Chunming Zhang3、*, Lihui Jiang1,2, Qi Zhou1,2, and Di Pan1,2
Author Affiliations
  • 1Shanghai Institute of Aerospace Control Technology, Shanghai 201109, China
  • 2Shanghai Key Laboratory of Space Intelligent Control Technology, Shanghai 201109, China
  • 3Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • show less
    Figures & Tables(15)
    Schematic diagram of principal component analysis (PCA) in case of two-dimensional input
    Simulation result graph of ICP algorithm
    Flow chart of PCA improved algorithm
    Initial posture of point cloud. (a) Query point cloud; (b) reference point cloud; (c) relative position relationship between reference point cloud (lower left quarter) and query point cloud (upper right corner)
    Simulation result graph of ICP algorithm. (a) Iteration error; (b) registration error; (c) registration result
    Decentralized point cloud image. (a) Rough initial value; (b) accurate initial value
    Rough initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Accurate initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Top three principal components of point cloud. (a) Reference point cloud; (b) query point cloud
    PCA preprocessing registration results. (a) Iteration error; (b) registration error; (c) registration result
    PCA iterative registration results. (a) Iteration error; (b) registration error; (c) registration result
    PCA iteration+rough initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    PCA iteration+accurate initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    • Table 1. Calculation process of ICP algorithm

      View table

      Table 1. Calculation process of ICP algorithm

      ICP algorithm

      Input:

      qQ:Model point

      pP:Query point

      R0:Initial rotation matrix

      t0:Initial translation matrix

      Output:

      R:Rotation matrix

      t:Translation matrix

      1)Ptem=Reproject(P,R0t0)

      2)foriter is 1tomax_ iterdo

      3)[Ptem]=SearchNN(Q)

      4)[Rt]=EstimateTrans(Ptem,Q,Rtemttem)

      5)P'=Reproject(Ptem,Rt)

      6)end for

      7)return Rt

    • Table 2. PCA iterative simulation results

      View table

      Table 2. PCA iterative simulation results

      Time /sIteration timesRegistration errorIteration errorRegistration result
      ICP179.2626971008.28230.8717Fail
      ICP+rough179.74361910010.16980.1089Fail
      ICP+accurate176.65423810024.55950.1531Fail
      PCA175.89740210025.83400.3129Fail
      PCA iteration169.420848946.68570.0001008Succeed
      PCA iteration+rough52.328031293.64890.0009937Succeed
      PCA iteration+accurate19.427939102.19320.0001471Succeed
    Tools

    Get Citation

    Copy Citation Text

    Fengyuan Shi, Chunming Zhang, Lihui Jiang, Qi Zhou, Di Pan. Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2211001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 19, 2021

    Accepted: Jul. 7, 2021

    Published Online: Oct. 12, 2022

    The Author Email: Chunming Zhang (956934060@qq.com)

    DOI:10.3788/LOP202259.2211001

    Topics