Infrared Technology, Volume. 47, Issue 2, 217(2025)

Lightweight Infrared Small Target Detection Algorithm under Oblique View Based on YOLOv5

Fei ZHANG1, Jian WANG1,2、*, and Yuesong ZHANG1
Author Affiliations
  • 1School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
  • 2Yunnan Provincial Key Lab. of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650504, China
  • show less
    References(15)

    [4] [4] HE K, Gkioxari G, Dollr P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.

    [5] [5] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.

    [6] [6] REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(1): 91-99.

    [7] [7] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, 2016: 21-37.

    [8] [8] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [9] [9] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.

    [10] [10] SUN M, ZHANG H, HUANG Z, et al. Road infrared target detection with I-YOLO[J]. IET Image Processing, 2022, 16(1): 92-101.

    [11] [11] SONG X, GAO S, CHEN C. A multispectral feature fusion network for robust pedestrian detection[J]. Alexandria Engineering Journal, 2021, 60(1): 73-85.

    [13] [13] TAN S, YAN J, JIANG Z, et al. Approach for improving YOLOv5 network with application to remote sensing target detection[J]. Journal of Applied Remote Sensing, 2021, 15(3): 036512-036512.

    [14] [14] Ghiasi G, LIN T Y, LE Q V. Nas-fpn: Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7036-7045.

    [15] [15] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.

    [16] [16] CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[J]. arXiv preprint arXiv: 2303.03667, 2023.

    [17] [17] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [18] [18] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning. PMLR, 2021: 11863-11874.

    [19] [19] JIA X, ZHU C, LI M, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3496-3504.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Fei, WANG Jian, ZHANG Yuesong. Lightweight Infrared Small Target Detection Algorithm under Oblique View Based on YOLOv5[J]. Infrared Technology, 2025, 47(2): 217

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 14, 2023

    Accepted: Mar. 13, 2025

    Published Online: Mar. 13, 2025

    The Author Email: WANG Jian (1528906057@qq.com)

    DOI:

    Topics