Journal of Inorganic Materials, Volume. 34, Issue 3, 310(2019)

Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys

Guan-Ting YU, Jia-Zhan XIN, Tie-Jun ZHU, Xin-Bing ZHAO, [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    References(26)

    [1] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[D]. Science, 357, 1-9(2017).

    [2] FU C G, LIU Y T, ZHU T Jet al. Compromise. Compromise and synergy in high-efficiency thermoelectric materials[D]. Advanced Materials, 29, 1-26(2017).

    [3] HU L P, LIU X H, ZHU T J et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[D]. Advanced Functional Materials, 24, 5211-5218(2014).

    [4] WU Y H, ZHAI R S, ZHU T J et al. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys[D]. Rare Metals, 37, 308-315(2018).

    [5] WANG L J, XU L L, ZHANG Q H et al. Effects of different amount of Se-doping on microstructures and thermoelectric properties of n-type Bi2Te3-xSex[D]. Journal of Inorganic Materials, 29, 1139-1144(2014).

    [6] FU C G, LIU X H, YING P J et al. High performance α-MgAgSb thermoelectric materials for low temperature power generation[D]. Chemistry of Materials, 27, 909-913(2015).

    [7] LALONDE A D, PEI Y Z, WANG H et al. Low effective mass leading to high thermoelectric performance[D]. Energy & Environmental Science, 5, 7963-7969(2012).

    [8] QIN B C, XIAO Y, ZHOU Y M et al. Thermoelectric transport properties of Pb-Sn-Te-Se system[D]. Rare Metals, 37, 343-350(2017).

    [9] LIU X H, WANG H, ZHU T J et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence[D]. Advanced Energy Materials, 3, 1238-1244(2013).

    [10] HE J, JIANG G Y, ZHU T J et al. High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties[D]. Advanced Functional Materials, 24, 3776-3781(2014).

    [11] CHEN X, GIRARD S N, MENG F et al. Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides[D]. Advanced Energy Materials, 4, 1-10(2014).

    [12] FEDOROV M I, GURIEVA E A, ZAITSEV V Ket al. Highly effective Mg2Si1-xSnx thermoelectrics. Physical Review B[D], 74, 1-5(2006).

    [13] LI X Y, QIU P F, YAO Z et al. Investigation on quick fabrication of n-type filled skutterudites[D]. Journal of Inorganic Materials, 31, 1375-1382(2016).

    [14] HUSSAIN M A, SLACK G A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators[D]. Journal of Applied Physics, 70, 2694-2718(1991).

    [15] HANSON J O, LASKOW W, VINING C B et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys[D]. Journal of Applied Physics, 69, 4333-4340(1991).

    [16] FU C G, XIE H H, ZHU T J et al. High efficiency half-Heusler thermoelectric materials for energy harvesting[D]. Advanced Energy Materials, 5, 1-13(2015).

    [17] BAI S Q, FU C G, LIU Y T et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[D]. Nature Communications, 6, 8144-1-7(2015).

    [18] BROWN S R, GASCOIN F, KAUZLARICH S M et al. Yb14MnSb11 new high efficiency thermoelectric material for power generation[D]. Chemistry of Materials, 18, 1873-1877(2006).

    [19] GAO H L, LIU X X, ZHU T J et al. Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting[D]. Journal of Materials Chemistry, 21, 5933-5937(2011).

    [20] HAN Z M, LU Q M, ZHANG X et al. Preparation and thermoelectric properties of (Mg2Si1-xSbx)0.4-(Mg2Sn)0.6 alloys[D]. Journal of Inorganic Materials, 27, 822-826(2012).

    [21] CHEN Y, DU Z L, ZHU T J et al. Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions[D]. Journal of Materials Chemistry, 22, 6838-6844(2012).

    [22] LI H, LIU W, TANG X F et al. Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5-ySn0.5Sby through adjustment of the Mg content[D]. Chemistry of Materials, 23, 5256-5263(2011).

    [23] GAO H L, ZHAO X B, ZHU T J et al. Influence of Ca substitution on the thermoelectric properties of Mg2Si[D]. Journal of Materials Science & Engineering, 28, 260-262(2010).

    [24] GAO H L, ZHAO X B, ZHU T J et al. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials[D]. Dalton Transactions, 43, 14072-14078(2014).

    [25] SUN T, YANG S H, ZHU T J et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials[D]. Nanotechnology, 19, 1-5(2008).

    [26] LIU Z X, REID J, ZHAO J B et al. Thermoelectric and electrical transport properties of Mg2Si multi-doped with Sb, Al and Zn[D]. Journal of Materials Chemistry A, 3, 19774-19782(2015).

    Tools

    Get Citation

    Copy Citation Text

    Guan-Ting YU, Jia-Zhan XIN, Tie-Jun ZHU, Xin-Bing ZHAO, [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys[J]. Journal of Inorganic Materials, 2019, 34(3): 310

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 3, 2018

    Accepted: --

    Published Online: Sep. 26, 2021

    The Author Email:

    DOI:10.15541/jim20180388

    Topics