Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817016(2025)
Robotic Ultrasound Imaging: Technological Progresses and Application Prospects
[1] Izadifar Z, Babyn P, Chapman D. Mechanical and biological effects of ultrasound: a review of present knowledge[J]. Ultrasound in Medicine & Biology, 43, 1085-1104(2017).
[2] Avola D, Cinque L, Fagioli A et al. Ultrasound medical imaging techniques: a survey[J]. ACM Computing Surveys, 54, 1-38(2022).
[3] Dange S. Synthetic aperture ultrasound imaging a review[C], 1-6(2020).
[4] Suligoj F, Heunis C M, Sikorski J et al. RobUSt-an autonomous robotic ultrasound system for medical imaging[J]. IEEE Access, 9, 67456-67465(2021).
[5] Priester A M, Natarajan S, Culjat M O. Robotic ultrasound systems in medicine[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60, 507-523(2013).
[6] Elek R, Nagy T D, Nagy D Á et al. Robotic platforms for ultrasound diagnostics and treatment[C], 1752-1757(2017).
[7] Britton N, Miller M A, Safadi S et al. Tele-ultrasound in resource-limited settings: a systematic review[J]. Frontiers in Public Health, 7, 244(2019).
[8] Swerdlow D R, Cleary K, Wilson E et al. Robotic arm-assisted sonography: review of technical developments and potential clinical applications[J]. American Journal of Roentgenology, 208, 733-738(2017).
[9] Qiu X K, Zhao J Y, Shen L C. Miniaturized optical ultrasound sensors and their applications in photoacoustic imaging (invited)[J]. Laser & Optoelectronics Progress, 61, 0211032(2024).
[10] Martin J W, Scaglioni B, Norton J C et al. Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation[J]. Nature Machine Intelligence, 2, 595-606(2020).
[11] Monfaredi R, Wilson E, Azizi Koutenaei B et al. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system[J]. Minimally Invasive Therapy & Allied Technologies, 24, 54-62(2015).
[12] Liu W, Zhao X, Fu Y. Research, application status and development trend of medical robot[J]. China Medical Devices, 38, 170-175(2023).
[13] Salcudean S E, Bell G, Bachmann S et al. Robot-assisted diagnostic ultrasound-design and feasibility experiments[M]. Medical image computing and computer-assisted intervention-MICCAI’99, 1679, 1062-1071(1999).
[14] Li Q X, Zhang F, Xi Q Y et al. Research progress of medical ultrasonic robot[J]. China Medical Devices, 37, 21-24, 61(2022).
[15] Kojcev R, Khakzar A, Fuerst B et al. On the reproducibility of expert-operated and robotic ultrasound acquisitions[J]. International Journal of Computer Assisted Radiology and Surgery, 12, 1003-1011(2017).
[16] Wu S Z, Wu D D, Ye R Z et al. Pilot study of robot-assisted teleultrasound based on 5G network: a new feasible strategy for early imaging assessment during COVID-19 pandemic[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 2241-2248(2020).
[17] Su K, Liu J W, Ren X Q et al. A fully autonomous robotic ultrasound system for thyroid scanning[J]. Nature Communications, 15, 4004(2024).
[18] Du H Y, Zhang X R, Zhang Y D et al. A review of robot-assisted ultrasound examination: systems and technology[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 20, e2660(2024).
[19] Merouche S, Allard L, Montagnon E et al. A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of B-mode images[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 35-46(2016).
[20] Li K Y, Xu Y X, Wang J et al. Image-guided navigation of a robotic ultrasound probe for autonomous spinal sonography using a shadow-aware dual-agent framework[J]. IEEE Transactions on Medical Robotics and Bionics, 4, 130-144(2022).
[21] Kim Y J, Choi J, Moon J et al. A sarcopenia detection system using an RGB-D camera and an ultrasound probe: eye-in-hand approach[J]. Biosensors, 11, 243(2021).
[22] Masuda K, Kimura E, Tateishi N et al. Three dimensional motion mechanism of ultrasound probe and its application for tele-echography system[C], 1112-1116(2001).
[23] Jiang Z L, Wang H Y, Li Z Y et al. Motion-aware robotic 3D ultrasound[C], 12494-12500(2021).
[24] Huang Q H, Lan J L, Li X L. Robotic arm based automatic ultrasound scanning for three-dimensional imaging[J]. IEEE Transactions on Industrial Informatics, 15, 1173-1182(2019).
[25] Sun D Z, Cappellari A, Lan B Y et al. Automatic robotic ultrasound for 3D musculoskeletal reconstruction: a comprehensive framework[J]. Technologies, 13, 70(2025).
[26] Jiang Z L, Li Z Y, Grimm M et al. Autonomous robotic screening of tubular structures based only on real-time ultrasound imaging feedback[J]. IEEE Transactions on Industrial Electronics, 69, 7064-7075(2022).
[27] Huang Y W, Xiao W, Wang C Y et al. Towards fully autonomous ultrasound scanning robot with imitation learning based on clinical protocols[J]. IEEE Robotics and Automation Letters, 6, 3671-3678(2021).
[28] Welleweerd M K, de Groot A G, Groenhuis V et al. Out-of-plane corrections for autonomous robotic breast ultrasound acquisitions[C], 12515-12521(2021).
[29] Kronander K, Billard A. Online learning of varying stiffness through physical human-robot interaction[C], 1842-1849(2012).
[30] Li B K, Zhang J C. Path planning of breast ultrasound robot based on point cloud and force control[J]. Journal of Lanzhou Institute of Technology, 31, 61-69(2024).
[31] Virga S, Zettinig O, Esposito M et al. Automatic force-compliant robotic ultrasound screening of abdominal aortic aneurysms[C], 508-513(2016).
[32] Gilbertson M W, Anthony B W. Force and position control system for freehand ultrasound[J]. IEEE Transactions on Robotics, 31, 835-849(2015).
[33] Jiang Z L, Grimm M, Zhou M C et al. Automatic force-based probe positioning for precise robotic ultrasound acquisition[J]. IEEE Transactions on Industrial Electronics, 68, 11200-11211(2021).
[34] Gullapalli V, Grupen R A, Barto A G. Learning reactive admittance control[C], 1475-1480(1992).
[35] Ning G C, Chen J Q, Zhang X R et al. Force-guided autonomous robotic ultrasound scanning control method for soft uncertain environment[J]. International Journal of Computer Assisted Radiology and Surgery, 16, 2189-2199(2021).
[36] Li H, Wang F W, Xu S J et al. Compliance control of end-effector of space manipulator based on impedance control[J]. Aerospace Control and Application, 45, 20-26(2019).
[37] Ning G C, Liang H Y, Zhang X R et al. Inverse-reinforcement-learning-based robotic ultrasound active compliance control in uncertain environments[J]. IEEE Transactions on Industrial Electronics, 71, 1686-1696(2024).
[38] Chatelain P, Krupa A, Navab N. Optimization of ultrasound image quality via visual servoing[C], 5997-6002(2015).
[39] Jiang Z L, Grimm M, Zhou M C et al. Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement[J]. IEEE Robotics and Automation Letters, 5, 1342-1349(2020).
[40] Krupa A, Fichtinger G, Hager G D. Real-time tissue tracking with B-mode ultrasound using speckle and visual servoing[M]. Medical image computing and computer-assisted intervention-MICCAI 2007, 4792, 1-8(2007).
[41] Nadeau C, Krupa A. Intensity-based ultrasound visual servoing: modeling and validation with 2-D and 3-D probes[J]. IEEE Transactions on Robotics, 29, 1003-1015(2013).
[42] Cheng T Y, Lin Y P, Ma X J. Ultrasound probe guiding method using vision and force[J]. Journal of Xidian University, 47, 80-87(2020).
[43] Baumgartner C F, Kamnitsas K, Matthew J et al. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound[J]. IEEE Transactions on Medical Imaging, 36, 2204-2215(2017).
[44] Droste R, Drukker L, Papageorghiou A T et al. Automatic probe movement guidance for freehand obstetric ultrasound[M]. Medical image computing and computer assisted intervention-MICCAI 2020, 12263, 583-592(2020).
[47] Duan J J, Gan Y H, Chen M et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment[J]. Robotics and Autonomous Systems, 102, 54-65(2018).
[48] Calinon S, Sardellitti I, Caldwell D G. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies[C], 249-254(2010).
[49] Bruyninckx H, De Schutter J. Specification of force-controlled actions in the “task frame formalism”-a synthesis[J]. IEEE Transactions on Robotics and Automation, 12, 581-589(1996).
[51] Martín-Martín R, Lee M A, Gardner R et al. Variable impedance control in end-effector space: an action space for reinforcement learning in contact-rich tasks[C], 1010-1017(2019).
[52] Turan M, Almalioglu Y, Gilbert H B et al. Learning to navigate endoscopic capsule robots[J]. IEEE Robotics and Automation Letters, 4, 3075-3082(2019).
[53] Qian C, Ren H L. Deep reinforcement learning in surgical robotics: enhancing the automation level[M]. Handbook of robotic surgery, 89-102(2025).
[54] Huang Q H, Zeng Z Z. A review on real-time 3D ultrasound imaging technology[J]. BioMed Research International, 2017, 6027029(2017).
[55] Hu L, Tang Y J, Zhou Z P et al. Reinforcement learning for orientation estimation using inertial sensors with performance guarantee[C], 10243-10249(2021).
[56] Chen P Z, Lu W Q. Deep reinforcement learning based moving object grasping[J]. Information Sciences, 565, 62-76(2021).
[57] Huang T, Chen K, Li B et al. Demonstration-guided reinforcement learning with efficient exploration for task automation of surgical robot[C], 4640-4647(2023).
[59] Chen B Y, Xia F, Ichter B et al. Open-vocabulary queryable scene representations for real world planning[C], 11509-11522(2023).
[62] Wang Y J, Zhang B K, Chen J Y et al. Prompt a robot to walk with large language models[C], 1531-1538(2024).
[65] Wang D Q, Feng L Y, Ye J G et al. Accelerating the integration of ChatGPT and other large-scale AI models into biomedical research and healthcare[J]. MedComm-Future Medicine, 2, e43(2023).
[66] Zhang Y D, Liang D X, Sun L Y et al. Design and experimental study of a novel 7-DOF manipulator for transrectal ultrasound probe[J]. Science Progress, 103, 36850420970366(2020).
[67] Tan J Y, Li B, Li Y W et al. A flexible and fully autonomous breast ultrasound scanning system[J]. IEEE Transactions on Automation Science and Engineering, 20, 1920-1933(2023).
[68] Hennersperger C, Fuerst B, Virga S et al. Towards MRI-based autonomous robotic US acquisitions: a first feasibility study[J]. IEEE Transactions on Medical Imaging, 36, 538-548(2017).
[69] Nakadate R, Tokunaga Y, Solis J et al. Development of robot assisted measurement system for abdominal ultrasound diagnosis[C], 367-372(2010).
[70] Seo J, Cho J H, Cha J et al. Design and experimental evaluations of robot-assisted tele-echography system for remote ultrasound imaging[C], 592-594(2017).
[71] Tsumura R, Hardin J W, Bimbraw K et al. Tele-operative low-cost robotic lung ultrasound scanning platform for triage of COVID-19 patients[J]. IEEE Robotics and Automation Letters, 6, 4664-4671(2021).
[72] Housden J, Wang S Y, Bao X Q et al. Towards standardized acquisition with a dual-probe ultrasound robot for fetal imaging[J]. IEEE Robotics and Automation Letters, 6, 1059-1065(2021).
[73] Adams S J, Burbridge B, Chatterson L et al. Telerobotic ultrasound to provide obstetrical ultrasound services remotely during the COVID-19 pandemic[J]. Journal of Telemedicine and Telecare, 28, 568-576(2022).
[74] Arbeille P, Ayoub J, Kieffer V et al. Realtime tele-operated abdominal and fetal echography in 4 medical centres, from one expert center, using a robotic arm & ISDN or satellite link[C], 45-46(2008).
[75] Tsumura R, Iwata H. Robotic fetal ultrasonography platform with a passive scan mechanism[J]. International Journal of Computer Assisted Radiology and Surgery, 15, 1323-1333(2020).
[76] Kim C, Schäfer F, Chang D et al. Robot for ultrasound-guided prostate imaging and intervention[C], 943-948(2011).
[77] Bao X Q, Wang S Y, Zheng L L et al. A novel ultrasound robot with force/torque measurement and control for safe and efficient scanning[J]. IEEE Transactions on Instrumentation and Measurement, 72, 4002012(2023).
[78] Ma Y F, Chen Z F, Yan A J. Effect of ultrasound-guided transversus abdominis plane block combined with intravenous nalbuphine in patients undergoing robot-assisted radical prostatectomy[J]. Chinese Journal of Robotic Surgery, 6, 38-44(2025).
[79] Liu L T, Xia J, Cheng G. Design and validation of ultrasound-guided femoral vein puncture robots[J]. Journal of Mechanical Transmission, 49, 69-78(2025).
[80] Antolin A, Roson N, Planes M et al. Validation of a tele-robotic ultrasound system for abdomen and thyroid gland explorations: a comparison with standard ultrasound[J]. The Ultrasound Journal, 17, 2(2025).
[81] Cruz Ulloa C, Domínguez D, del Cerro J et al. Analysis of MR-VR tele-operation methods for legged-manipulator robots[J]. Virtual Reality, 28, 131(2024).
Get Citation
Copy Citation Text
Wenhao Wei, Xiangling Tian, Yifan Chen. Robotic Ultrasound Imaging: Technological Progresses and Application Prospects[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817016
Category: Medical Optics and Biotechnology
Received: May. 8, 2025
Accepted: Jun. 13, 2025
Published Online: Sep. 9, 2025
The Author Email: Xiangling Tian (xianglingt@sina.com), Yifan Chen (yifan.chen@uestc.edu.cn)
CSTR:32186.14.LOP251179