Frontiers of Optoelectronics, Volume. 15, Issue 4, 12200(2022)

Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells

Xianglang Sun1,2, Zonglong Zhu2、*, and Zhong’an Li1
Author Affiliations
  • 1Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
  • show less

    [1] [1] Hammarstrom, L., Hammes-Schiffer, S.: Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42(12), 1859–1860 (2009)

    [2] [2] Khalid, S., Sultan, M., Ahmed, E., Ahmed, W.: Nanotechnology for energy production. In: Ahmed, W., Booth, M., Nourafkan, E. (eds.) Emerging Nanotechnologies for Renewable Energy, pp. 3–35. Elsevier, San Diego (2021)

    [3] [3] Roy, P., Kumar Sinha, N., Tiwari, S., Khare, A.: A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020)

    [4] [4] Huang, F., Li, M., Siffalovic, P., Cao, G., Tian, J.: From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019)

    [5] [5] Wu, X., Li, B., Zhu, Z., Chueh, C.C., Jen, A.K.Y.: Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50(23), 13090–13128 (2021)

    [6] [6] Jena, A.K., Kulkarni, A., Miyasaka, T.: Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119(5), 3036–3103 (2019)

    [7] [7] Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)

    [8] [8] National Renewable Energy Laboratory: best research-cell efficiencies chart. Available at nrel. gov/ pv/ assets/ pdfs/ best- resea rchcell-effic ienci es- rev22 0630. pdf (2020)

    [9] [9] Li, Z., Klein, T.R., Kim, D.H., Yang, M., Berry, J.J., van Hest, M.F.A.M., Zhu, K.: Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017 (2018)

    [10] [10] Calió, L., Kazim, S., Gratzel, M., Ahmad, S.: Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 55(47), 14522–14545 (2016)

    [11] [11] Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4(1), 2761 (2013)

    [12] [12] Gao, K., Zhu, Z., Xu, B., Jo, S.B., Kan, Y., Peng, X., Jen, A.K.Y.: Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29(47), 1703980 (2017)

    [13] [13] Zuo, C., Bolink, H.J., Han, H., Huang, J., Cahen, D., Ding, L.: Advances in perovskite solar cells. Adv. Sci. 3(7), 1500324 (2016)

    [14] [14] Bai, Y., Meng, X., Yang, S.: Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 8(5), 1701883 (2018)

    [15] [15] Pham, H.D., Yang, T.C.J., Jain, S.M., Wilson, G.J., Sonar, P.: Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10(13), 1903326 (2020)

    [16] [16] Meng, L., You, J., Guo, T.F., Yang, Y.: Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49(1), 155–165 (2016)

    [17] [17] Lin, X., Cui, D., Luo, X., Zhang, C., Han, Q., Wang, Y., Han, L.: Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020)

    [18] [18] Li, Z., Li, B., Wu, X., Sheppard, S.A., Zhang, S., Gao, D., Long, N.J., Zhu, Z.: Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022)

    [19] [19] Sun, X., Zhao, D., Li, Z.: Recent advances in the design of dopantfree hole transporting materials for highly efficient perovskite solar cells. Chin. Chem. Lett. 29(2), 219–231 (2018)

    [20] [20] Liu, F., Li, Q., Li, Z.: Hole-transporting materials for perovskite solar cells. Asian J. Org. Chem. 7(11), 2182–2200 (2018)

    [21] [21] Bakr, Z.H., Wali, Q., Fakharuddin, A., Schmidt-Mende, L., Brown, T.M., Jose, R.: Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017)

    [22] [22] Urieta-Mora, J., García-Benito, I., Molina-Ontoria, A., Martín, N.: Hole transporting materials for perovskite solar cells: a chemical approach. Chem. Soc. Rev. 47(23), 8541–8571 (2018)

    [23] [23] Sun, X., Deng, X., Li, Z., Xiong, B., Zhong, C., Zhu, Z., Li, Z., Jen, A.K.Y.: Dopant-free crossconjugated hole-transporting polymers for highly efficient perovskite solar cells. Adv. Sci. 7(13), 1903331 (2020)

    [24] [24] Tang, G., You, P., Tai, Q., Yang, A., Cao, J., Zheng, F., Zhou, Z., Zhao, J., Chan, P.K.L., Yan, F.: Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), e1807689 (2019)

    [25] [25] Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J.: Nonwetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6(1), 7747 (2015)

    [26] [26] Lee, J., Kang, H., Kim, G., Back, H., Kim, J., Hong, S., Park, B., Lee, E., Lee, K.: Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer. Adv. Mater. 29(22), 1606363 (2017)

    [27] [27] Wang, Z.K., Gong, X., Li, M., Hu, Y., Wang, J.M., Ma, H., Liao, L.S.: Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 10(5), 5479–5489 (2016)

    [28] [28] Xiao, Q., Wu, F., Han, M., Li, Z., Zhu, L., Li, Z.: A pseudotwo-dimensional conjugated polysquaraine: an efficient P-type polymer semiconductor for organic photovoltaics and perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 6(28), 13644–13651 (2018)

    [29] [29] Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S., Gerbaldi, C.: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016)

    [30] [30] Sun, X., Yu, X., Li, Z.: Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells. ACS Appl. Energy Mater. 3(11), 10282–10302 (2020)

    [31] [31] Zhang, J., Sun, Q., Chen, Q., Wang, Y., Zhou, Y., Song, B., Yuan, N., Ding, J., Li, Y.: High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater. 29(22), 1900484 (2019)

    [32] [32] Liu, J., De Bastiani, M., Aydin, E., Harrison, G.T., Gao, Y., Pradhan, R.R., Eswaran, M.K., Mandal, M., Yan, W., Seitkhan, A., Babics, M., Subbiah, A.S., Ugur, E., Xu, F., Xu, L., Wang, M., Rehman, A.U., Razzaq, A., Kang, J., Azmi, R., Said, A.A., Isikgor, F.H., Allen, T.G., Andrienko, D., Schwingenschlogl, U., Laquai, F., De Wolf, S.: Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022)

    [33] [33] Magomedov, A., Al-Ashouri, A., Kasparavicius, E., Strazdaite, S., Niaura, G., Jost, M., Malinauskas, T., Albrecht, S., Getautis, V.: Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8(32), 1801892 (2018)

    [34] [34] Pron, A., Rannou, P.: Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27(1), 135–190 (2002)

    [35] [35] Allard, S., Forster, M., Souharce, B., Thiem, H., Scherf, U.: Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. Engl. 47(22), 4070–4098 (2008)

    [36] [36] Kim, M., Ryu, S.U., Park, S.A., Choi, K., Kim, T., Chung, D., Park, T.: Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 30(20), 1904545 (2020)

    [37] [37] Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)

    [38] [38] Li, Z., Chueh, C.C., Jen, A.K.Y.: Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog. Polym. Sci. 99, 101175 (2019)

    [39] [39] Kong, X., Jiang, Y., Wu, X., Chen, C., Guo, J., Liu, S., Gao, X., Zhou, G., Liu, J.M., Kempa, K., Gao, J.: Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 8(4), 1858–1864 (2020)

    [40] [40] Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515(7527), 384–388 (2014)

    [41] [41] Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.Y., Noh, J.H., Seo, J.: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019)

    [42] [42] Guo, Y., He, L., Guo, J., Guo, Y., Zhang, F., Wang, L., Yang, H., Xiao, C., Liu, Y., Chen, Y., Yao, Z., Sun, L.: A phenanthrocarbazole-based dopant-free hole-transport polymer with noncovalent conformational locking for efficient perovskite solar cells. Angew. Chem. Int. Ed. Engl. 61(6), e202114341 (2022)

    [43] [43] Fu, Q., Tang, X., Liu, H., Wang, R., Liu, T., Wu, Z., Woo, H.Y., Zhou, T., Wan, X., Chen, Y., Liu, Y.: Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144(21), 9500–9509 (2022)

    [44] [44] Li, Y., Wang, B., Liu, T., Zeng, Q., Cao, D., Pan, H., Xing, G.: Interfacial engineering of PTAA/perovskites for improved crystallinity and hole extraction in inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14(2), 3284–3292 (2022)

    [45] [45] Xu, J., Dai, J., Dong, H., Li, P., Chen, J., Zhu, X., Wang, Z., Jiao, B., Hou, X., Li, J., Wu, Z.: Surface-tension release in PTAA-based inverted perovskite solar cells. Org. Electron. 100, 106378 (2022)

    [46] [46] Chen, S., Dai, X., Xu, S., Jiao, H., Zhao, L., Huang, J.: Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557), 902–907 (2021)

    [47] [47] Jung, E.D., Harit, A.K., Kim, D.H., Jang, C.H., Park, J.H., Cho, S., Song, M.H., Woo, H.Y.: Multiply charged conjugated polyelectrolytes as a multifunctional interlayer for efficient and scalable perovskite solar cells. Adv. Mater. 32(30), e2002333 (2020)

    [48] [48] Yang, G., Ni, Z., Yu, Z.J., Larson, B.W., Yu, Z., Chen, B., Alasfour, A., Xiao, X., Luther, J.M., Holman, Z.C., Huang, J.: Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photonics 16(8), 588–594 (2022)

    [49] [49] Wang, C., Zhao, Y., Ma, T., An, Y., He, R., Zhu, J., Chen, C., Ren, S., Fu, F., Zhao, D., Li, X.: A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022)

    [50] [50] Sun, X., Li, Z., Yu, X., Wu, X., Zhong, C., Liu, D., Lei, D., Jen, A.K., Li, Z., Zhu, Z.: Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. Engl. 60(13), 7227–7233 (2021)

    [51] [51] Xu, X., Ji, X., Chen, R., Ye, F., Liu, S., Zhang, S., Chen, W., Wu, Y., Zhu, W.H.: Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32(9), 2109968 (2022)

    [52] [52] Chen, R., Liu, S., Xu, X., Ren, F., Zhou, J., Tian, X., Yang, Z., Guanz, X., Liu, Z., Zhang, S., Zhang, Y., Wu, Y., Han, L., Qi, Y., Chen, W.: Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15(6), 2567–2580 (2022)

    [53] [53] Scherf, U.: Counterion pinning in conjugated polyelectrolytes for applications in organic electronics. Angew. Chem. Int. Ed. Engl. 50(22), 5016–5017 (2011)

    [54] [54] Seo, J.H., Gutacker, A., Sun, Y., Wu, H., Huang, F., Cao, Y., Scherf, U., Heeger, A.J., Bazan, G.C.: Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133(22), 8416–8419 (2011)

    [55] [55] Duan, C., Zhang, K., Zhong, C., Huang, F., Cao, Y.: Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chem. Soc. Rev. 42(23), 9071–9104 (2013)

    [56] [56] Li, X., Wang, Y.C., Zhu, L., Zhang, W., Wang, H.Q., Fang, J.: Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 9(37), 31357–31361 (2017)

    [57] [57] Li, X., Zhang, W., Guo, X., Lu, C., Wei, J., Fang, J.: Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022)

    [58] [58] Ali, F., Roldán-Carmona, C., Sohail, M., Nazeeruddin, M.K.: Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020)

    [59] [59] Yalcin, E., Can, M., Rodriguez-Seco, C., Aktas, E., Pudi, R., Cambarau, W., Demic, S., Palomares, E.: Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. Energy Environ. Sci. 12(1), 230–237 (2019)

    [60] [60] Al-Ashouri, A., Kohnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jost, M., Matic, G., Rech, B., Schlatmann, R., Topic, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V., Albrecht, S.: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020)

    [61] [61] Al-Ashouri, A., Magomedov, A., Rob, M., Jost, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J.A., Kohnen, E., Kasparavicius, E., Levcenco, S., Gil-Escrig, L., Hages, C.J., Schlatmann, R., Rech, B., Malinauskas, T., Unold, T., Kaufmann, C.A., Korte, L., Niaura, G., Getautis, V., Albrecht, S.: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019)

    [62] [62] Deng, X., Qi, F., Li, F., Wu, S., Lin, F.R., Zhang, Z., Guan, Z., Yang, Z., Lee, C.S., Jen, A.K.Y.: Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. Engl. 61(30), e202203088 (2022)

    [63] [63] Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)

    [64] [64] Bauer, T., Schmaltz, T., Lenz, T., Halik, M., Meyer, B., Clark, T.: Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl. Mater. Interfaces 5(13), 6073–6080 (2013)

    [65] [65] Hotchkiss, P.J., Jones, S.C., Paniagua, S.A., Sharma, A., Kippelen, B., Armstrong, N.R., Marder, S.R.: The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45(3), 337–346 (2012)

    [66] [66] Ambrosio, F., Martsinovich, N., Troisi, A.: What is the best anchoring group for a dye in a dye-sensitized solar cell? J. Phys. Chem. Lett. 3(11), 1531–1535 (2012)

    [67] [67] Brinkmann, K.O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., Tückmantel, C., Günster, M., Maschwitz, T., Gobelsmann, F., Koch, C., Hertel, D., Caprioglio, P., Pena-Camargo, F., Perdigón-Toro, L., Al-Ashouri, A., Merten, L., Hinderhofer, A., Gomell, L., Zhang, S., Schreiber, F., Albrecht, S., Meerholz, K., Neher, D., Stolterfoht, M., Riedl, T.: Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022)

    [68] [68] AbdollahiNejand, B., Ritzer, D.B., Hu, H., Schackmar, F., Moghadamzadeh, S., Feeney, T., Singh, R., Laufer, F., Schmager, R., Azmi, R., Kaiser, M., Abzieher, T., Gharibzadeh, S., Ahlswede, E., Lemmer, U., Richards, B.S., Paetzold, U.W.: Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7(7), 620–630 (2022)

    [69] [69] Lange, I., Reiter, S., Patzel, M., Zykov, A., Nefedov, A., Hildebrandt, J., Hecht, S., Kowarik, S., Woll, C., Heimel, G., Neher, D.: Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24(44), 7014–7024 (2014)

    [70] [70] Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., Tian, Y., Deng, Y., Xiao, K., Wu, J., Saidaminov, M.I., Lin, H., Ma, C.Q., Zhao, Z., Wu, Y., Zhang, L., Tan, H.: Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022)

    [71] [71] Aktas, E., Phung, N., Kobler, H., González, D.A., Méndez, M., Kafedjiska, I., Turren-Cruz, S.H., Wenisch, R., Lauermann, I., Abate, A., Palomares, E.: Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14(7), 3976–3985 (2021)

    [72] [72] Li, E., Bi, E., Wu, Y., Zhang, W., Li, L., Chen, H., Han, L., Tian, H., Zhu, W.H.: Synergistic coassembly of highly wettable and uniform hole-extraction monolayers for scaling-up perovskite solar cells. Adv. Funct. Mater. 30(7), 1909509 (2020)

    [73] [73] Li, E., Liu, C., Lin, H., Xu, X., Liu, S., Zhang, S., Yu, M., Cao, X.M., Wu, Y., Zhu, W.H.: Bonding strength regulates anchoringbased self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(35), 2103847 (2021)

    [74] [74] Ullah, A., Park, K.H., Nguyen, H.D., Siddique, Y., Shah, S.F.A., Tran, H., Park, S., Lee, S.I., Lee, K.K., Han, C.H., Kim, K., Ahn, S., Jeong, I., Park, Y.S., Hong, S.: Novel phenothiazine-based selfassembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12(2), 2103175 (2022)

    [75] [75] Usluer, o., Abbas, M., Wantz, G., Vignau, L., Hirsch, L., Grana, E., Brochon, C., Cloutet, E., Hadziioannou, G.: Metal residues in semiconducting polymers: impact on the performance of organic electronic devices. ACS Macro Lett. 3(11), 1134–1138 (2014)

    [76] [76] Bryan, Z.J., McNeil, A.J.: Conjugated polymer synthesis via catalyst- transfer polycondensation (CTP): mechanism, scope, and applications. Macromolecules 46(21), 8395–8405 (2013)

    [77] [77] Lee, S.W., Bae, S., Kim, D., Lee, H.S.: Historical analysis of highefficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32(51), e2002202 (2020)

    [78] [78] Park, N.G., Zhu, K.: Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020)


    Get Citation

    Copy Citation Text

    Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW ARTICLE

    Received: Aug. 31, 2022

    Accepted: Oct. 10, 2022

    Published Online: Jan. 22, 2023

    The Author Email: Zhu Zonglong (