Journal of Quantum Optics, Volume. 25, Issue 3, 297(2019)
Error-detected Entanglement Concentration Assisted by Quantum-dot Spins in Double-sided Optical Microcavities
[1] [1] Nielsen M A,Chuang I L.Quantum Computation and Quantum Information[M].Cambridge: Cambridge University Press,2000.
[2] [2] Gisin N,Ribordy G,Tittel W,Zbinden H.Quantum Cryptography[J].Rev Mod Phys,2002,74: 145.DOI: 10.1103/RevModPhys.74.145.
[3] [3] Bennett C H,Brassard G,Crepeau C,et al.Teleporting an Unknown Quantum State Via Dual Classical and Einstein-Podolsky-Rosen Channels[J].Phys Rev Lett,1993,70: 1895.DOI: 10.1103/PhysRevLett.70.1895.
[4] [4] Bennett C H,Wiesner S J.Communication Via One-and Two-particle Operators on Einstein-Podolsky-Rosen States[J].Phys Rev Lett,1992,69: 2881.DOI: 10.1103/PhysRevLett.69.2881.
[5] [5] Liu X S,Long G L,Tong D M,et al.General Scheme for Superdense Coding Between Multiparties[J].Phys Rev A,2002,65: 022304.DOI: 10.1103/PhysRevA.65.022304.
[6] [6] Hillery M,Buzek V,Berthiaume A.Quantum Secret Sharing[J].Phys Rev A,1999,59: 1829.DOI: 10.1103/PhysRevA.59.1829.
[7] [7] Xiao L,Long G L,Deng F G,et al.Efficient Multiparty Quantum-secret-sharing Schemes[J].Phys Rev A,2004,69: 052307.DOI: 10.1103/PhysRevA.69.052307.
[8] [8] Bennett C H,Brassard G,Popescu S,et al.Purification of Noisy Entanglement and Faithful Teleportation Via Noisy Channels[J].Phys Rev Lett,1996,76: 722.DOI: 10.1103/PhysRevLett.76.722.
[9] [9] Deutsch D,Ekert A,Jozsa R,et al.Quantum Privacy Amplification and the Security of Quantum Cryptography Over Noisy Channels[J].Phys Rev Lett,1996,77: 2818.DOI: 10.1103/PhysRevLett.77.2818.
[10] [10] Pan J W,Simon C,Brukner C,et al.Entanglement Purification for Quantum Communication[J].Nature (London),2001,410: 1067.DOI: 10.1038/35074041.
[11] [11] Simon C,Pan J W.Polarization Entanglement Purification using Spatial Entanglement[J].Phys Rev Lett,2002,89: 257901.DOI: 10.1103/PhysRevLett.89.257901.
[12] [12] Pan J W,Gasparonl S,Ursin R,et al.Experimental Entanglement Purification of Arbitrary Unknown States[J].Nature (London),2003: 423: 417.DOI: 10.1038/nature01623.
[13] [13] Sheng Y B,Deng F G,Zhou H Y.Efficient Polarization-entanglement Purification based on Parametric Down-conversion Sources with Cross-Kerr Nonlinearity[J].Phys Rev A,2008,77: 042308.DOI: 10.1103/PhysRevA.77.042308.
[14] [14] Sheng Y B,Deng F G.Deterministic Entanglement Purification and Complete Nonlocal Bell-state Analysis with Hyperentanglement[J].Phys Rev A,2010,81: 032307.DOI: 10.1103/PhysRevA.81.032307.
[15] [15] Sheng Y B,Deng F G.One-step Deterministic Polarization-entanglement Purification using Spatial Entanglement[J].Phys Rev A,2010,82: 044305.DOI: 10.1103/PhysRevA.82.044305.
[16] [16] Deng F G.One-step Error Correction for Multipartite Polarization Entanglement[J].Phys Rev A,2011,83: 062316.DOI: 10.1103/PhysRevA.83.062316.
[17] [17] Bennett C H,Bernstein H J,Popescu S,et al.Concentrating Partial Entanglement by Local Operations[J].Phys Rev A,1996,53: 2046.DOI: 10.1103/PhysRevA.53.2046.
[18] [18] Bose S,Vedral V,Knight P L.Purification Via Entanglement Swapping and Conserved Entanglement[J].Phys Rev A,1999,60: 194.DOI: 10.1103/PhysRevA.60.194.
[19] [19] Shi B S,Jiang Y K,Guo G C.Optimal Entanglement Purification Via Entanglement Swapping[J].Phys Rev A,2000,62: 054301.DOI: 10.1103/PhysRevA.62.054301.
[20] [20] Yang M,Zhao Y,Song W,et al.Entanglement Concentration for Unknown Atomic Entangled States Via Entanglement Swapping[J].Phys Rev A,2005,71: 044302.DOI: 10.1103/PhysRevA.71.044302.
[21] [21] Peng Z H,Zou J,Liu X J,et al.Atomic and Photonic Entanglement Concentration Via Photonic Faraday Rotation[J].Phys Rev A,2012,86: 034305.DOI: 10.1103/PhysRevA.86.034305.
[22] [22] Cao C,Wang C,He L Y,et al.Atomic Entanglement Purifcation and Concentration using Coherent State Input-output Process in Low-Q Cavity QED Regime[J].Opt Express,2013,21: 4093.DOI: 10.1364/OE.21.004093.
[23] [23] Wang G Y,Li T,Deng F G.High-effciency Atomic Entanglement Concentration for Quantum Communication Network Assisted by Cavity QED[J].Quantum Inf Process,2015,14: 1305.DOI: 10.1007/s11128-015-0938-8.
[24] [24] Cao C,Chen X,Duan Y W,et al.Concentrating Partially Entangled W-class States on Nonlocal Atoms using Low-Q Optical Cavity and Linear Optical Elements[J].Sci China-Phys Mech Astron,2016,59: 100315.DOI: 10.1007/s11433-016-0253-x.
[25] [25] Cao C,Fan L,Chen X,et al.Effcient Entanglement Concentration of Arbitrary Unknown Less-entangled Three-atom W States Via Photonic Faraday Rotation in Cavity QED[J].Quantum Inf Process,2017,16: 98.DOI: 10.1007/s11128-017-1549-3.
[26] [26] Wang C,Zhang Y,Jin G S.Entanglement Purifcation and Concentration of Electron-spin Entangled States using Quantum-dot Spins in Optical Microcavities[J].Phys Rev A,2011,84: 032307.DOI: 10.1103/PhysRevA.84.032307.
[27] [27] Wang C,Shen W W,Mi S C,et al.Concentration and Distribution of Entanglement based on Valley Qubits System in Graphene[J].Sci Bull,2015,60: 2016.DOI: 10.1007/s11434-015-0941-6.
[28] [28] Yuan X J,Yang M,Dong P,et al.Entanglement Concentration of Unknowns States Via the Quantum Dot Plus Double-sided Cavity System[J].Laser Phys Lett,2015,12: 115204.DOI: 10.1088/1612-2011/12/11/115204.
[29] [29] Ren B C,Long G L.General Hyperentanglement Concentration for Photon Systems Assisted by Quantum-dot Spins Inside Optical Microcavities[J].Opt Express,2014: 22: 6547.DOI: 10.1364/OE.22.006547.
[30] [30] Wang C.Efficient Entanglement Concentration for Partially Entangled Electrons using a Quantum-dot and Microcavity Coupled System[J].Phys Rev A,2012,86: 012323.DOI: 10.1103/PhysRevA.86.012323.
[31] [31] Sheng Y B,Zhou L,Wang L,et al.Efficient Entanglement Concentration for Quantum Dot and Optical Microcavities Systems[J].Quantum Inf Process,2013,12: 1885.DOI: 10.1007/s11128-012-0502-8.
[32] [32] Sheng Y B,Zhou L.Efficient W-state Entanglement Concentration using Quantum-dot and Optical Microcavities[J].J Opt Soc Am B,2013,30: 678.DOI: 10.1364/JOSAB.30.000678.
[33] [33] Cao C,Wang T J,Zhang R,et al.Cluster State Entanglement Generation and Concentration on Nitrogen Vacancy Centers in Decoherence Free Subspace[J].Laser Phys Lett,2015,12: 036001.DOI: 10.1088/1612-2011/12/3/036001.
[34] [34] Ren B C,Deng F G.Hyperentanglement Purification and Concentration Assisted by Diamond NV Centers Inside Photonic Crystal Cavities[J].Laser Phys Lett,2013,10: 115201.DOI: 10.1088/1612-2011/10/11/115201.
[35] [35] Sheng Y B,Liu J,Zhao S Y,et al.Multipartite Entanglement Concentration for Nitrogen-vacancy Center and Microtoroidal Resonator System[J].Chin Sci Bull,2013,58: 3507.DOI: 10.1007/s11434-013-6019-4.
[36] [36] Cao C,Ding H,Li Y,et al.Efficient Multipartite Entanglement Concentration Protocol for Nitrogen-vacancy Center and Microresonator Coupled Systems[J].Quantum Inf Process,2015,14: 1265.DOI: 10.1007/s11128-015-0924-1.
[37] [37] He L Y,Cao C,Wang C.Entanglement Concentration for Multi-particle Partially Entangled W State using Nitrogen Vacancy Center and Microtoroidal Resonator System[J].Opt Commun,2013,298: 260.DOI: 10.1016/j.optcom.2013.02.031.
[38] [38] Du F F,Deng F G.Heralded Entanglement Concentration for Photon Systems with Linear-optical Elements[J].Sci China-Phys Mech Astron,2015,58: 040303.DOI: 10.1007/s11433-014-5638-3.
[39] [39] Banerjee A,Shukla C,Pathak A.Maximal Entanglement Concentration for a Set of (n+1)-qubit States[J].Quantum Inf Process,2015,14: 4523.DOI: 10.1007/s11128-015-1128-4.
[40] [40] Li T,Deng F G.Linear-optics-based Entanglement Concentration of Four-photon-type States for Quantum Communication Network[J].Int J Theor Phys,2014,53: 3026.DOI: 10.1007/s10773-014-2098-5.
[41] [41] Sheng Y B,Zhou L,Zhao S M,et al.Efficient Single-photon-assisted Entanglement Concentration for Partially Entangled Photon Pairs[J].Phys Rev A,2012,85: 012307.DOI: 10.1103/PhysRevA.85.012307.
[42] [42] Li Y,Aolita L,Chang D E,et al.Robust-fidelity Atom-photon Entangling Gates in the Weak-coupling Regime[J].Phys Rev Lett,2012,109: 160504.DOI: 10.1103/PhysRevLett.109.160504.
[43] [43] Wang G Y,Ai Q,Ren B C,et al.Error-detected Generation and Complete Analysis of Hyperentangled Bell States for Photons Assisted by Quantum-dot Spins in Double-sided Optical Microcavities[J].Opt Express,2016,24: 28444.DOI: 10.1364/OE.24.028444.
[44] [44] Li T,Deng F G.Error-rejecting Quantum Computing with Solid-state Spins Assisted by Low-Q Optical Microcavities[J].Phys Rev A,2016,94: 062310.DOI: 10.1103/PhysRevA.94.062310.
[45] [45] Li T,Yang G J,Deng F G.Heralded Quantum Repeater for a Quantum Communication Network based on Quantum Dots Embedded in Optical Microcavities[J].Phys Rev A,2016,93: 012302.DOI: 10.1103/PhysRevA.93.012302.
[46] [46] Li T,Deng F G.Heralded High-efficiency Quantum Repeater with Atomic Ensembles Assisted by Faithful Single-photon Transmission[J].Sci Rep,2015,5: 15610.DOI: 10.1038/srep15610.
[47] [47] Wang G Y,Li T,Ai Q,et al.Faithful Entanglement Purification for High-capacity Quantum Communication with Two-photon Four-qubit Systems[J].Phys Rev Appl,2018,10: 054058.DOI: 10.1103/PhysRevApplied.10.054058.
[48] [48] Wang G Y,Li T,Ai Q,et al.Self-error-corrected Hyperparallel Photonic Quantum Computation Working with Both the Polarization and the Spatial-mode Degrees of Freedom[J].Opt Express,2018,26: 023333.DOI: 10.1364/OE.26.023333.
[49] [49] Song G Z,Wu F Z,Zhang M,et al.Heralded Quantum Repeater based on the Scattering of Photons Off Single Emitters using Parametric Down-conversion Source[J].Sci Rep,2016,6: 28744.DOI: 10.1038/srep28744.
[50] [50] Song G Z,Zhang M,Ai Q,et al.Heralded Quantum Repeater based on the Scattering of Photons Off Single Emitters in One-dimensional Waveguides[J].Ann Phys,2017,378: 33.DOI: 10.1016/j.aop.2017.01.007.
[51] [51] Cao C,Liu X H,Duan Y W,et al.Entanglement Concentration of Unknown States on Separate Nitrogen-vacancy Centers Via Error-detected Entanglement Swapping[J].Laser Phys,2017,27: 055202.DOI: 10.1088/1555-6611/aa6992.
[52] [52] Hu C Y,Munro W J,O’Brien J L,et al.Proposed Entanglement beam Splitter using a Quantum-dot Spin in a Double-sided Optical Microcavity[J].Phys Rev B,2009,80: 205326.DOI: 10.1103/PhysRevB.80.205326.
[53] [53] Hu C Y,Rarity J G.Loss-resistant State Teleportation and Entanglement Swapping using a Quantum-dot Spin in an Optical Microcavity[J].Phys Rev B,2011,83: 115303.DOI: 10.1103/PhysRevB.83.115303.
[54] [54] Bonato C,Haupt F,Oemrawsingh S S R,et al.CNOT and Bell-state Analysis in the Weak-coupling Cavity QED Regime[J].Phys Rev Lett,2010,104: 160503.DOI: 10.1103/PhysRevLett.104.160503.
[55] [55] Hu C Y,Munro W J,Rarity J G.Deterministic Photon Entangler using a Charged Quantum Dot Inside a Microcavity[J].Phys Rev B,2008,78: 125318.DOI: 10.1103/PhysRevB.78.125318.
[56] [56] Hu C Y,Young A,O’Brien J L,et al.Giant Optical Faraday Rotation Induced by a Single-electron Spin in a Quantum Dot: Applications to Entangling Remote Spins Via a Single Photon[J].Phys Rev B,2008,78: 085307.DOI: 10.1103/PhysRevB.78.085307.
[57] [57] Wei H R,Deng F G.Scalable Photonic Quantum Computing Assisted by Quantum-dot Spin in Double-sided Optical Microcavity[J].Opt Express,2013,21: 17671.DOI: 10.1364/OE.21.017671.
[58] [58] Ren B C,Deng F G.Hyper-parallel Photonic Quantum Computation with Coupled Quantum Dots[J].Sci Rep,2014,4: 4623.DOI: 10.1038/srep04623.
[59] [59] Wei H R,Deng F G.Robust Deterministic Quantum Computation of Quantum-dot Spins Inside Microcavities based on Parity-check Building Blocks[J].J Opt Soc Am B,2016,33: 804.DOI: 10.1364/JOSAB.33.000804.
[60] [60] Liu Q,Zhang M.Complete and Deterministic Analysis for Spatial-polarization Hyperentangled Greenberger-Horne-Zeilinger States with Quantum-dot Cavity Systems[J].J Opt Soc Am B,2013,30: 2263.DOI: 10.1364/JOSAB.30.002263.
[61] [61] Hijlkema M,Weber B,Specht H P,et al.A Single-photon Server with Just One Atom[J].Nat Phys,2007,3: 253.DOI: 10.1038/nphys569.
[62] [62] Atature M,Dreiser J,Badolato A,et al.Quantum-dot Spin-state Preparation with Near-unity Fidelity[J].Science,2006,312: 551.DOI: 10.1038/nphys569.
[63] [63] Atature M,Dreiser J,Badolato A,et al.Observation of Faraday Rotation from a Single Confined Spin[J].Nat Phys,2007,3: 101.DOI: 10.1038/nphys521.
[64] [64] Berezovsky J,Mikkelsen M H,Stoltz N G,et al.Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot[J].Science,2008,320: 349.DOI: 10.1126/science.1154798.
[65] [65] Press D,Ladd T D,Zhang B Y,et al.Complete Quantum Control of a Single Quantum Dot Spin using Ultrafast Optical Pulses[J].Nature (London),2008,456: 218.DOI: 10.1038/nature07530.
[66] [66] Gupta J A,Knobel R,Samarth N,et al.Ultrafast Manipulation of Electron Spin Coherence[J].Science,2001,292: 2458.DOI: 10.1126/science.1061169.
[67] [67] Chen P C,Piermarocchi C,Sham L J,et al.Theory of Quantum Optical Control of a Single Spin in a Quantum Dot[J].Phys Rev B,2004,69: 075320.DOI: 10.1103/PhysRevB.69.075320.
[68] [68] Hanson R,Willems L,Beveren H,et al.Single-shot Readout of Electron Spin States in a Quantum Dot using Spin-dependent Tunnel Rates[J].Phys Rev Lett,2005,94: 196802.DOI: 10.1103/PhysRevLett.94.196802.
[69] [69] Press D,Greve K De,McMahon P L,et al.Ultrafast Optical Spin Echo in a Single Quantum Dot[J].Nat Photon,2010,4: 367.DOI: 10.1038/nphoton.2010.83.
[70] [70] Reithmaier J P,Sek G,Loffler A,et al.Strong Coupling in a Single Quantum Dot-semiconductor Microcavity System[J].Nature,2004,432: 197.DOI: 10.1038/nature02969.
[71] [71] Reitzenstein S,Hofmann C,Gorbunovb A,et al.AlAs/GaAs Micropillar Cavities with Quality Factors Exceeding 150.000[J].Appl Phys Lett,2007,90: 251109.DOI: 10.1063/1.2749862.
[72] [72] Greilich A,Yakovlev D R,Shabaev A,et al.Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots[J].Science,2006,313: 341.DOI: 10.1126/science.1128215.
[73] [73] Borri P,Langbein W,Schneider S,et al.Ultralong Dephasing Time in InGaAs Quantum Dots[J].Phys Rev Lett,2001,87: 157401.DOI: 10.1103/PhysRevLett.87.157401.
[74] [74] Birkedal D,Leosson K,Hvam J M.Long Lived Coherence in Self-assembled Quantum Dots[J].Phys Rev Lett, 2001,87: 227401.DOI: 10.1103/PhysRevLett.87.227401.
[75] [75] Sheng Y B,Zhou L.Blind Quantum Computation with Noise Environment[J].Phys Rev A,2018,98: 052343.DOI: 10.1103/PhysRevA.98.052343.
Get Citation
Copy Citation Text
CHANG Yan-hong, LIU A-peng. Error-detected Entanglement Concentration Assisted by Quantum-dot Spins in Double-sided Optical Microcavities[J]. Journal of Quantum Optics, 2019, 25(3): 297
Category:
Received: Nov. 24, 2018
Accepted: --
Published Online: Sep. 27, 2019
The Author Email: LIU A-peng (apliu@sxit.edu.cn)