Journal of Quantum Optics, Volume. 29, Issue 2, 20201(2023)

Development and Application of Light Source for the Second Stage Cooling in the Transportable 87Sr Optical Clock

KONG De-huan1, WANG Zhi-hui2, LIANG Ting1, FENG Min1, GUO Feng1,3, WANG Ye-bing1,3、*, and CHANG Hong1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] OELKER E, HUTSON R B, KENNEDY C J, et al. Demonstration of 4.8×10-17 stability at 1 μss for two independent optical clocks[J]. Nature Photon, 2011, 13:714. DOI: 10.1038/S41566-019-0493-4.

    [2] [2] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18[J]. Phys Rev Lett, 2019, 123:033201. DOI: 10.1103/PhysRevLett.123.033201.

    [3] [3] PAUL S, SWANSON T B, HANSSEN J et al. Microwave-clock timescale with instability on order of 10-17[J]. Metrologia, 2017 54(3):247. DOI: 10.1088/1681-7575/aa65f7.

    [4] [4] PETIT G, ARIAS F, PANFILO G. International atomic time: Status and future challenges[J]. CR Phys, 2015 16:480. DOI: 10.1016/j.crhy.2015.03.002.

    [5] [5] MEHLSTUBLER T E, GROSCHE G, LISDAT C, et al. Atomic clocks for geodesy[J]. Reports on Progress in Physics, 2018, 81:064401. DOI: 10.1088/1361-6633/aab409.

    [6] [6] DEREVIANKO A. AND POSPELOV M. Hunting for topological dark matter with atomic clocks[J]. Nature Phys, 2014 10:933. DOI: 10.1038/nphys3137.

    [7] [7] RIEHLE F. Optical clock networks[J]. Nature Photon, 2017, 11:25-31. DOI: 10.1038/NPHOTON.2016.235.

    [8] [8] TAKAMOTO M, USHJIAMA I, OHMAE N, et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Phonics, 2020, 14(7):411-415.

    [9] [9] OHMAE N, TAKAMOTO M, TAKAHASHI Y, et al. Transportable Strontium Optical Lattice Clocks Operated Outside Laboratory at the Level of 10-18 Uncertainty[J]. Adv Quantum Technol, 2021, 4(5):2170015.

    [10] [10] PIZZOCARO M, SEKIDO M, TAKEFUJI K, et al. Intercontinental comparison of optical atomic clocks through very long baseline interferometry[J]. Nature Phys, 2021, 17(2):223-227.

    [11] [11] ZHAO Y N, ZHANG J, STUHLER J, et al. Sub-Hertz frequency stabilization of a commercial diode laser[J]. Opt Commun, 2010, 283(23):4696. DOI: 10.1016/j.optcom.2010.06.079.

    [12] [12] FOX R W. Temperature analysis of low-expansion Fabry-Perot cavities[J]. Opt Express, 2009, 17:15023. DOI: 10.1364/OE.17.015023.

    [13] [13] NOTCUTT M, MA L S, YE J, et al. Simple and Compact 1-Hz Laser System via an Improved Mounting Configuration of a Reference Cavity[J]. Opt Lett, 2005, 30:1815. DOI: 10.1364/OL.30.001815.

    [14] [14] STEPHEN W. AND PATRICK G. Force-insensitive optical cavity[J]. Opt Lett, 2011, 36(18):3572-3574. DOI: 10.1364/OL.36.003572.

    [15] [15] LEIBRANDT D R, BERGQUIST J C, ROSENBAND T. Cavity-stabilized laser with acceleration sensitivity below 10-12g-1[J]. Phys Rev A, 2013, 87:023829. DOI: 10.1103/PhysRevA.87.023829.

    [16] [16] CHEN Q F, NEVSKY A, CARDACE M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1×10-15[J]. Opt Express, 2014, 85(11):113107. DOI: 10.1063/1.4898334.

    [17] [17] CHEN X T, JIANG Y Y, LI B, et al. Laser frequency instability of 6×10-16 using 10-cm-long cavities on a cubic spacer[J]. Chin Opt Lett, 2020, 18(3):030201. DOI: 10.3788/COL202018.030201.

    [18] [18] LOFTUS T H, IDO T, LUDLOW A D, et al. Narrow line cooling: finite photon recoil dynamics[J]. Phys Rev Lett, 2004, 93(7): 073003. DOI: 10.1103/PhysRevLett.93.073003.

    [19] [19] YE L, YI-GE L, YANG Z, et al. Stable Narrow Linewidth 689 nm Diode Laser for the Second Stage Cooling and Trapping of Strontium Atoms[J]. Chin Phys Lett, 2010, 27(7):074208. DOI: 10.1088/0256-307X/27/7/074208.

    [20] [20] WANG Y B, YIN M J, REN J, et al. Strontium optical lattice clock at the National Time Service Center[J]. Chin Phys B, 2018, 27(2):023701. DOI: 10.1088/1674-1056/27/2/023701.

    [21] [21] LIU H, YIN M J, KONG D H, et al. Selection and amplification of a single optical frequency comb mode for laser cooling of the strontium atoms in an optical clock[J]. App Phys Lett, 2015, 107:151104. DOI: 10.1063/1.4933259.

    [22] [22] KONG D H, WANG Z H, GUO F, et al. A transportable optical lattice clock at the National Time Service Center[J]. Chin Phys B, 2020, 29(7):070602. DOI: 10.1088/1674-1056/ab9290.

    [24] [24] BOYD M M. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time[D]. Boulder, CO: University of Colorado, 2007.

    Tools

    Get Citation

    Copy Citation Text

    KONG De-huan, WANG Zhi-hui, LIANG Ting, FENG Min, GUO Feng, WANG Ye-bing, CHANG Hong. Development and Application of Light Source for the Second Stage Cooling in the Transportable 87Sr Optical Clock[J]. Journal of Quantum Optics, 2023, 29(2): 20201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 5, 2022

    Accepted: --

    Published Online: Mar. 15, 2024

    The Author Email: WANG Ye-bing (wangyebing@ntsc.ac.cn)

    DOI:10.3788/jqo20232902.0201

    Topics