Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2023028(2023)
Brillouin scattering spectroscopy for studying human anatomy: Towards in situ mechanical characterization of soft tissue
[1] N.M.E. Ayad, S. Kaushik, V.M. Weaver. Tissue mechanics, an important regulator of development and disease.
[2] K. Mukund, S. Subramaniam. Skeletal muscle: A review of molecular structure and function, in health and disease.
[3] N.A. Shirwany, M.-H. Zou. Arterial stiffness: A brief review.
[4] B. Spronck, J.D. Humphrey. Arterial stiffness: Different metrics, different meanings.
[5] L.E. Bilston, K. Tan. Measurement of passive skeletal muscle mechanical properties in vivo: Recent progress, clinical applications, and remaining challenges.
[6] B.F. Kennedy, P. Wijesinghe, D.D. Sampson. The emergence of optical elastography in biomedicine.
[7] G. Scarcelli, S.H. Yun. Confocal Brillouin microscopy for three-dimensional mechanical imaging.
[8] G. Antonacci, T. Beck, A. Bilenca, J. Czarske, K. Elsayad, J. Guck, K. Kim, B. Krug, F. Palombo, R. Prevedel, G. Scarcelli. Recent progress and current opinions in Brillouin microscopy for life science applications.
[9] C. Poon, J. Chou, M. Cortie, I. Kabakova. Brillouin imaging for studies of micromechanics in biology and biomedicine: from current state-of-the-art to future clinical translation.
[10] K. Elsayad, S. Polakova, J. Gregan. Probing mechanical properties in biology using Brillouin microscopy.
[11] S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, F. Palombo. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis.
[12] G. Antonacci, R.M. Pedrigi, A. Kondiboyina, V.V. Mehta, R. De Silva, C. Paterson, R. Krams, P. Török. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma.
[13] D. Cikes, K. Elsayad, E. Sezgin, E. Koitai, T. Ferenc, M. Orthofer, R. Yarwood, L.X. Heinz, V. Sedlyarov, N.D. Miranda, A. Taylor, S. Grapentine, F. al-Murshedi, A. Abott, A. Weidinger, C. Kutchukian, C. Sanchez, S.J.F. Cronin, M. Novatchkova, A. Kavirayani, T. Schuetz, B. Haubner, L. Haas, A. Hagelkruys, S. Jackowski, A. Kozlov, V. Jacquemond, C. Knauf, G. Superti-Furga, E. Rullman, T. Gustafsson, J. McDermot, M. Lowe, Z. Radak, J.S. Chamberlain, M. Bakovic, S. Banka, J.M. Penninger. Critical role of PCYT2 in muscle health and aging.
[14] C. Conrad, K.M. Gray, K.M. Stroka, I. Rizvi, G. Scarcelli. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy.
[15] J. Rix, O. Uckermann, K. Kirsche, G. Schackert, E. Koch, M. Kirsch, R. Galli. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells.
[16] J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R.H. Finnell, K.V. Larin, G. Scarcelli. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography.
[17] R.J.J. Rioboó, N. Gontán, D. Sanderson, M. Desco, M.V. Gómez-Gaviro. Brillouin spectroscopy: From biomedical research to new generation pathology diagnosis.
[18] M. Troyanova-Wood, Z. Meng, V.V. Yakovlev. Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy.
[19] S. Besner, G. Scarcelli, R. Pineda, S.H. Yun. In vivo Brillouin analysis of the aging crystalline lens.
[20] G. Scarcelli, S.H. Yun. In vivo Brillouin optical microscopy of the human eye.
[21] I. Kabakova, Y. Xiang, C. Paterson, P. Török. Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy.
[22] B.J. Berne, R. Pecora.
[23] F. Palombo, D. Fioretto. Brillouin light scattering: Applications in biomedical sciences.
[24] F. Palombo, C.P. Winlove, R.S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, D. Fioretto. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering.
[25] P.J. Wu, I.V. Kabakova, J.W. Ruberti, J.M. Sherwood, I.E. Dunlop, C. Paterson, P. Török, D.R. Overby. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials.
[26] O.G. Andriotis, K. Elsayad, D.E. Smart, M. Nalbach, D.E. Davies, P.J. Thurner. Hydration and nanomechanical changes in collagen fibrils bearing advanced glycation end-products.
[27] M. Bailey, M. Alunni-Cardinali, N. Correa, S. Caponi, T. Holsgrove, H. Barr, N. Stone, C.P. Winlove, D. Fioretto, F. Palombo. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics.
[28] S.V. Adichtchev, Y.A. Karpegina, K.A. Okotrub, M.A. Surovtseva, V.A. Zykova, N.V. Surovtsev. Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration.
[29] G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, S.H. Yun. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus.
[30] N.J. Tao, S.M. Lindsay, A. Rupprecht. Dynamic coupling between DNA and its primary hydration shell studied by Brillouin scattering.
[31] S.A. Lee, S.M. Lindsay, J.W. Powell, T. Weidlich, N.J. Tao, G.D. Lewen, A. Rupprecht. A Brillouin scattering study of the hydration of Li- and Na-DNA films.
[32] G. Scarcelli, W.J. Polacheck, H.T. Nia, K. Patel, A.J. Grodzinsky, R.D. Kamm, S.H. Yun. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
[33] M. Samalova, K. Elsayad, A. Melnikava, A. Peaucelle, E. Gahurova, J. Gumulec, I. Spyroglou, E.V. Zemlyanskaya, E.V. Ubogoeva, J. Hejatko. Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis.
[34] R. Pethig, D.B. Kell. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology.
[35] A. Carlton, R.M. Orr. The effects of fluid loss on physical performance: A critical review.
[36] K.F.A. Ross, R.E. Gordon. Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance.
[37] N.M. Lacevic, J.E. Sader. Viscoelasticity of glycerol at ultra-high frequencies investigated via molecular dynamics simulations.
[38] I. Remer, R. Shaashoua, N. Shemesh, A. Ben-Zvi, A. Bilenca. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy.
[39] B. Krug, N. Koukourakis, J.W. Czarske. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels.
[40] K. Elsayad, S. Werner, M. Gallemí, J. Kong, E.R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, Y. Belkhadir. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging.
[41] Z. Meng, A.J. Traverso, V.V. Yakovlev. Background clean-up in Brillouin microspectroscopy of scattering medium.
[42] E. Edrei, M.C. Gather, G. Scarcelli. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging.
[43] R. Khan, B. Gul, S. Khan, H. Nisar, I. Ahmad. Refractive index of biological tissues: Review, measurement techniques, and applications.
[44] A.-D. Annexes. Adult reference computational phantoms.
[45] F.P. Bolin, L.E. Preuss, R.C. Taylor, R.J. Ference. Refractive index of some mammalian tissues using a fiber optic cladding method.
[46] S. Gelman, D.S. Warner, M.A. Warner. Venous function and central venous pressure: A physiologic story.
[47] I.V. Ogneva, D.V. Lebedev, B.S. Shenkman. Transversal stiffness and Young’s modulus of single fibers from rat soleus muscle probed by atomic force microscopy.
[48] D.B. Camasão, D. Mantovani. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review.
[49] F. Troiani, K. Nikolic, T.G. Constandinou. Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model.
[50] M. Lin, Y. Chen, W. Deng, H. Liang, S. Yu, Z. Zhang, C. Liu. Quantifying the elasticity properties of the median nerve during the upper limb neurodynamic test 1.
[51] D. Sicard, L.E. Fredenburgh, D.J. Tschumperlin. Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions.
[52] S. Ryu, N. Martino, S.J.J. Kwok, L. Bernstein, S.-H. Yun. Label-free histological imaging of tissues using Brillouin light scattering contrast.
[53] P.S. Timashev, S.L. Kotova, G.V. Belkova, E.V. Gubar’kova, L.B. Timofeeva, N.D. Gladkova, A.B. Solovieva. Atomic force microscopy study of atherosclerosis progression in arterial walls.
[54] J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H.C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.P. Rieu, T. Dehoux. High-frequency mechanical properties of tumors measured by Brillouin light scattering.
[55] L.D. Landau, E.M. Lifshitz. Landau L.D., Lifshitz E.M. (eds),
[56] M.J. Holmes, N.G. Parker, M.J.W. Povey. Temperature dependence of bulk viscosity in water using acoustic spectroscopy.
[57] G. Antonacci, M.R. Foreman, C. Paterson, P. Török. Spectral broadening in Brillouin imaging.
[58] M. Mattarelli, G. Capponi, A.A. Passeri, D. Fioretto, S. Caponi. Disentanglement of multiple scattering contribution in Brillouin microscopy.
[59] S. Ryu, N. Martino, S.J.J. Kwok, L. Bernstein, S.H. Yun. Label-free histological imaging of tissues using Brillouin light scattering contrast.
[60] R. Schlüßler, K. Kim, M. Nötzel, A. Taubenberger, S. Abuhattum, T. Beck, P. Müller, S. Maharana, G. Cojoc, S. Girardo, A. Hermann. Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity.
[61] C.J. Chan, C. Bevilacqua, R. Prevedel. Mechanical mapping of mammalian follicle development using Brillouin microscopy.
Get Citation
Copy Citation Text
Paata Pruidze, Elena Chayleva, Wolfgang J. Weninger, Kareem Elsayad. Brillouin scattering spectroscopy for studying human anatomy: Towards in situ mechanical characterization of soft tissue[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2023028
Category: Research Articles
Received: Mar. 27, 2023
Accepted: Apr. 29, 2023
Published Online: Aug. 31, 2023
The Author Email: Elsayad Kareem (kareem.elsayad@meduniwien.ac.at)