Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2023028(2023)

Brillouin scattering spectroscopy for studying human anatomy: Towards in situ mechanical characterization of soft tissue

Paata Pruidze1,2, Elena Chayleva3, Wolfgang J. Weninger1,2, and Kareem Elsayad1,2、*
Author Affiliations
  • 1Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
  • 2Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
  • 3Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
  • show less
    References(61)

    [1] N.M.E. Ayad, S. Kaushik, V.M. Weaver. Tissue mechanics, an important regulator of development and disease. Philos. Trans. Roy. Soc. B: Biol. Sci., 374, 20180215(2019).

    [2] K. Mukund, S. Subramaniam. Skeletal muscle: A review of molecular structure and function, in health and disease. WIREs Syst. Biol. Med., 12, e1462(2020).

    [3] N.A. Shirwany, M.-H. Zou. Arterial stiffness: A brief review. Acta Pharmacol. Sin., 31, 1267-1276(2010).

    [4] B. Spronck, J.D. Humphrey. Arterial stiffness: Different metrics, different meanings. J. Biomech. Eng., 141, 0910041-09100412(2019).

    [5] L.E. Bilston, K. Tan. Measurement of passive skeletal muscle mechanical properties in vivo: Recent progress, clinical applications, and remaining challenges. Ann. Biomed. Eng., 43, 261-273(2015).

    [6] B.F. Kennedy, P. Wijesinghe, D.D. Sampson. The emergence of optical elastography in biomedicine. Nat. Photon., 11, 215-221(2017).

    [7] G. Scarcelli, S.H. Yun. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon., 2, 39-43(2007).

    [8] G. Antonacci, T. Beck, A. Bilenca, J. Czarske, K. Elsayad, J. Guck, K. Kim, B. Krug, F. Palombo, R. Prevedel, G. Scarcelli. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys. Rev., 12, 615-624(2020).

    [9] C. Poon, J. Chou, M. Cortie, I. Kabakova. Brillouin imaging for studies of micromechanics in biology and biomedicine: from current state-of-the-art to future clinical translation. J. Phys.: Photon., 3, 012002(2021).

    [10] K. Elsayad, S. Polakova, J. Gregan. Probing mechanical properties in biology using Brillouin microscopy. Trends Cell Biol., 29, 608-611(2019).

    [11] S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, F. Palombo. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J. Innov. Opt. Health Sci., 10, 1742001(2017).

    [12] G. Antonacci, R.M. Pedrigi, A. Kondiboyina, V.V. Mehta, R. De Silva, C. Paterson, R. Krams, P. Török. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J. R. Soc. Interf., 12, 20150843(2015).

    [13] D. Cikes, K. Elsayad, E. Sezgin, E. Koitai, T. Ferenc, M. Orthofer, R. Yarwood, L.X. Heinz, V. Sedlyarov, N.D. Miranda, A. Taylor, S. Grapentine, F. al-Murshedi, A. Abott, A. Weidinger, C. Kutchukian, C. Sanchez, S.J.F. Cronin, M. Novatchkova, A. Kavirayani, T. Schuetz, B. Haubner, L. Haas, A. Hagelkruys, S. Jackowski, A. Kozlov, V. Jacquemond, C. Knauf, G. Superti-Furga, E. Rullman, T. Gustafsson, J. McDermot, M. Lowe, Z. Radak, J.S. Chamberlain, M. Bakovic, S. Banka, J.M. Penninger. Critical role of PCYT2 in muscle health and aging. bioRxiv(2022).

    [14] C. Conrad, K.M. Gray, K.M. Stroka, I. Rizvi, G. Scarcelli. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy. Cell Mol. Bioeng., 12, 215-226(2019).

    [15] J. Rix, O. Uckermann, K. Kirsche, G. Schackert, E. Koch, M. Kirsch, R. Galli. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. J. Roy. Soc. Interf., 19, 20220209(2022).

    [16] J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R.H. Finnell, K.V. Larin, G. Scarcelli. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Res., 111, 991-998(2019).

    [17] R.J.J. Rioboó, N. Gontán, D. Sanderson, M. Desco, M.V. Gómez-Gaviro. Brillouin spectroscopy: From biomedical research to new generation pathology diagnosis. Int. J. Mol. Sci., 22, 8055(2021).

    [18] M. Troyanova-Wood, Z. Meng, V.V. Yakovlev. Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy. Biomed. Opt. Express, 10, 1774-1781(2019).

    [19] S. Besner, G. Scarcelli, R. Pineda, S.H. Yun. In vivo Brillouin analysis of the aging crystalline lens. Invest. Ophthalmol. Vis. Sci., 57, 5093-5100(2016).

    [20] G. Scarcelli, S.H. Yun. In vivo Brillouin optical microscopy of the human eye. Opt. Express, 20, 9197-9202(2012).

    [21] I. Kabakova, Y. Xiang, C. Paterson, P. Török. Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy. J. Innov. Opt. Health Sci., 10, 1742002(2017).

    [22] B.J. Berne, R. Pecora. Dynamic light scattering: With applications to chemistry, biology, and physics(2000).

    [23] F. Palombo, D. Fioretto. Brillouin light scattering: Applications in biomedical sciences. Chem. Rev., 119, 7833-7847(2019).

    [24] F. Palombo, C.P. Winlove, R.S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, D. Fioretto. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J. R. Soc. Interf., 11, 20140739(2014).

    [25] P.J. Wu, I.V. Kabakova, J.W. Ruberti, J.M. Sherwood, I.E. Dunlop, C. Paterson, P. Török, D.R. Overby. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods, 15, 561-562(2018).

    [26] O.G. Andriotis, K. Elsayad, D.E. Smart, M. Nalbach, D.E. Davies, P.J. Thurner. Hydration and nanomechanical changes in collagen fibrils bearing advanced glycation end-products. Biomed. Opt. Express, 10, 1841-1855(2019).

    [27] M. Bailey, M. Alunni-Cardinali, N. Correa, S. Caponi, T. Holsgrove, H. Barr, N. Stone, C.P. Winlove, D. Fioretto, F. Palombo. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics. Science, Advances, 6, eabc1937(2020).

    [28] S.V. Adichtchev, Y.A. Karpegina, K.A. Okotrub, M.A. Surovtseva, V.A. Zykova, N.V. Surovtsev. Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration. Phys. Rev. E, 99, 062410(2019).

    [29] G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, S.H. Yun. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest. Ophthalmol. Vis. Sci., 54, 1418-1425(2013).

    [30] N.J. Tao, S.M. Lindsay, A. Rupprecht. Dynamic coupling between DNA and its primary hydration shell studied by Brillouin scattering. Biopolymers, 27, 1655-1671(1988).

    [31] S.A. Lee, S.M. Lindsay, J.W. Powell, T. Weidlich, N.J. Tao, G.D. Lewen, A. Rupprecht. A Brillouin scattering study of the hydration of Li- and Na-DNA films. Biopolymers, 26, 1637-1665(1987).

    [32] G. Scarcelli, W.J. Polacheck, H.T. Nia, K. Patel, A.J. Grodzinsky, R.D. Kamm, S.H. Yun. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods, 12, 1132-1134(2015).

    [33] M. Samalova, K. Elsayad, A. Melnikava, A. Peaucelle, E. Gahurova, J. Gumulec, I. Spyroglou, E.V. Zemlyanskaya, E.V. Ubogoeva, J. Hejatko. Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis. bioRxiv(2020).

    [34] R. Pethig, D.B. Kell. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol., 32, 933(1987).

    [35] A. Carlton, R.M. Orr. The effects of fluid loss on physical performance: A critical review. J. Sport Health Sci., 4, 357-363(2015).

    [36] K.F.A. Ross, R.E. Gordon. Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance. J. Microscopy, 128, 7-21(1982).

    [37] N.M. Lacevic, J.E. Sader. Viscoelasticity of glycerol at ultra-high frequencies investigated via molecular dynamics simulations. J. Chem. Phys., 144, 054502(2016).

    [38] I. Remer, R. Shaashoua, N. Shemesh, A. Ben-Zvi, A. Bilenca. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods, 17, 913-916(2020).

    [39] B. Krug, N. Koukourakis, J.W. Czarske. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. Opt. Express, 27, 26910-26923(2019).

    [40] K. Elsayad, S. Werner, M. Gallemí, J. Kong, E.R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, Y. Belkhadir. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal, 9, rs5(2016).

    [41] Z. Meng, A.J. Traverso, V.V. Yakovlev. Background clean-up in Brillouin microspectroscopy of scattering medium. Opt. Express, 22, 5410-5415(2014).

    [42] E. Edrei, M.C. Gather, G. Scarcelli. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express, 25, 6895-6903(2017).

    [43] R. Khan, B. Gul, S. Khan, H. Nisar, I. Ahmad. Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagn. Photodyn. Ther., 33, 102192(2021).

    [44] A.-D. Annexes. Adult reference computational phantoms. Ann. ICRP, 39, 47-70(2009).

    [45] F.P. Bolin, L.E. Preuss, R.C. Taylor, R.J. Ference. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt., 28, 2297-2303(1989).

    [46] S. Gelman, D.S. Warner, M.A. Warner. Venous function and central venous pressure: A physiologic story. Anesthesiology, 108, 735-748(2008).

    [47] I.V. Ogneva, D.V. Lebedev, B.S. Shenkman. Transversal stiffness and Young’s modulus of single fibers from rat soleus muscle probed by atomic force microscopy. Biophys. J., 98, 418-424(2010).

    [48] D.B. Camasão, D. Mantovani. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio., 10, 100106(2021).

    [49] F. Troiani, K. Nikolic, T.G. Constandinou. Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model. PLoS One, 13, e0200392(2018).

    [50] M. Lin, Y. Chen, W. Deng, H. Liang, S. Yu, Z. Zhang, C. Liu. Quantifying the elasticity properties of the median nerve during the upper limb neurodynamic test 1. Appl. Bionics. Biomech., 2022, 3300835(2022).

    [51] D. Sicard, L.E. Fredenburgh, D.J. Tschumperlin. Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions. J. Mech. Behav. Biomed. Mater., 74, 118-127(2017).

    [52] S. Ryu, N. Martino, S.J.J. Kwok, L. Bernstein, S.-H. Yun. Label-free histological imaging of tissues using Brillouin light scattering contrast. Biomed. Opt. Express, 12, 1437-1448(2021).

    [53] P.S. Timashev, S.L. Kotova, G.V. Belkova, E.V. Gubar’kova, L.B. Timofeeva, N.D. Gladkova, A.B. Solovieva. Atomic force microscopy study of atherosclerosis progression in arterial walls. Microsc. Microanal., 22, 311-325(2016).

    [54] J. Margueritat, A. Virgone-Carlotta, S. Monnier, H. Delanoë-Ayari, H.C. Mertani, A. Berthelot, Q. Martinet, X. Dagany, C. Rivière, J.P. Rieu, T. Dehoux. High-frequency mechanical properties of tumors measured by Brillouin light scattering. Phys. Rev. Lett., 122, 018101(2019).

    [55] L.D. Landau, E.M. Lifshitz. Landau L.D., Lifshitz E.M. (eds), Fluid Mechanics, 263-324(1987).

    [56] M.J. Holmes, N.G. Parker, M.J.W. Povey. Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J. Phys.: Conf. Ser., 269, 012011(2011).

    [57] G. Antonacci, M.R. Foreman, C. Paterson, P. Török. Spectral broadening in Brillouin imaging. Appl. Phys. Lett., 103, 012011(2013).

    [58] M. Mattarelli, G. Capponi, A.A. Passeri, D. Fioretto, S. Caponi. Disentanglement of multiple scattering contribution in Brillouin microscopy. ACS Photon., 9, 2087-2091(2022).

    [59] S. Ryu, N. Martino, S.J.J. Kwok, L. Bernstein, S.H. Yun. Label-free histological imaging of tissues using Brillouin light scattering contrast. Biomed. Opt. Express, 12, 1437-1448(2021).

    [60] R. Schlüßler, K. Kim, M. Nötzel, A. Taubenberger, S. Abuhattum, T. Beck, P. Müller, S. Maharana, G. Cojoc, S. Girardo, A. Hermann. Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity. eLife, 11, e68490(2022).

    [61] C.J. Chan, C. Bevilacqua, R. Prevedel. Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun. Biol., 4, 1133(2021).

    Tools

    Get Citation

    Copy Citation Text

    Paata Pruidze, Elena Chayleva, Wolfgang J. Weninger, Kareem Elsayad. Brillouin scattering spectroscopy for studying human anatomy: Towards in situ mechanical characterization of soft tissue[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2023028

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 27, 2023

    Accepted: Apr. 29, 2023

    Published Online: Aug. 31, 2023

    The Author Email: Elsayad Kareem (kareem.elsayad@meduniwien.ac.at)

    DOI:10.1051/jeos/2023028

    Topics