Chinese Journal of Ship Research, Volume. 18, Issue 2, 235(2023)

Uncertainty analysis of propulsion shafting vibration

Huihui ZHOU1,2, Zengguang LI3, Tianyun LI1,2,4, Xiang ZHU1,2,4, and Qingsheng LI1,2
Author Affiliations
  • 1School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Hubei Key Laboratory of Naval Architecture and Ocean Engineering Hydrodynamics, Wuhan 430074, China
  • 3China Ship Development and Design Center, Shanghai 201108, China
  • 4Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
  • show less
    Figures & Tables(19)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    -dimensional multi-DOFs system维多自由度系统
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Model sizes of ship propulsion shafting system and material parameters

      View table
      View in Article

      Table 1. Model sizes of ship propulsion shafting system and material parameters

      参数轴段Li
      1234
      轴段截面直径/ mm110
      轴段长度 / m0.010.591.600.80
      轴段杨氏模量 /Pa2.1×1011
      轴段密度/ (kg·m−3)7 800
    • Table 2. Comparison of lateral natural frequency of ship shafting obtained by different methods

      View table
      View in Article

      Table 2. Comparison of lateral natural frequency of ship shafting obtained by different methods

      阶数不同方法计算的横向固有频率/Hz误差/%
      MatlabANSYS
      122.62922.6250.02
      239.86839.8590.02
      369.42469.4320.01
      4168.520168.6640.08
      5286.707287.3130.21
      6446.862448.6420.40
      7665.472669.6300.62
    • Table 3. Four working conditions of ship propulsion shafting system under different excitations

      View table
      View in Article

      Table 3. Four working conditions of ship propulsion shafting system under different excitations

      工况激励力区间/N自相关系数函数
      工况1${ {\boldsymbol{F} }_{} }^{\rm{I} }(t) = [ - {\text{30} },{\text{30} }]$$\rho {\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 1 $
      工况2${\boldsymbol{F} }_1^{\rm{I} }(t) = [ - {\text{30} },{\text{30} }]$${\boldsymbol{F} }_2^{\rm{I} }(t) = [ - 15,15]$${\rho _1}{\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 1 $${\rho _2}{\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 3 $
      工况3${{\boldsymbol{F}}^{\rm{I} } }(t) = [ - {\text{30} },{\text{30} }]$$\rho {\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 1 $
      工况4${\boldsymbol{F} }_1^{\rm{I} }(t) = [ - {\text{30} },{\text{30} }]$${\boldsymbol{F} }_2^{\rm{I} }(t) = [ - 30,30]$${\rho _1}{\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 1 $${\rho _2}{\text{ = } }{{\rm{e}}^{ - \lambda \left| \tau \right|} }$$ \lambda = 1 $
    • Table 4. Comparison of lateral displacement response

      View table
      View in Article

      Table 4. Comparison of lateral displacement response

      位置横向位移响应/m
      工况1工况2
      轴承1[−0.868×10−6,0.868×10−6][−0.885×10−6,0.885×10−6]
      轴承2[−1.203×10−6,1.203×10−6][−2.900×10−6,2.900×10−6]
      螺旋桨[−6.528×10−6,6.528×10−6][−6.538×10−6,6.538×10−6]
    • Table 5. Comparison of longitudinal displacement response

      View table
      View in Article

      Table 5. Comparison of longitudinal displacement response

      位置纵向位移响应/m
      工况3工况4
      轴承1[−3.083×10−6,3.083×10−6][−4.343×10−6,4.343×10−6]
      轴承2[−3.059×10−6,3.059×10−6][−4.326×10−6,4.326×10−6]
      螺旋桨[−3.092×10−6,3.092×10−6][−4.350×10−6,4.350×10−6]
    Tools

    Get Citation

    Copy Citation Text

    Huihui ZHOU, Zengguang LI, Tianyun LI, Xiang ZHU, Qingsheng LI. Uncertainty analysis of propulsion shafting vibration[J]. Chinese Journal of Ship Research, 2023, 18(2): 235

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: Sep. 24, 2021

    Accepted: --

    Published Online: Mar. 20, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02539

    Topics