Advanced Photonics, Volume. 6, Issue 2, 026006(2024)
Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach
[11] A. Napoli et al. Towards multiband optical systems, NeTu3E.1(2018).
[15] H. Zheng et al. From automation to autonomous: driving the optical network management to fixed fifth-generation (F5G) advanced, 385-389(2023).
[17] G. P. Agrawal. Nonlinear Fiber Optics(2001).
[22] H. Buglia et al. An extended version of the ISRS GN model in closed-form accounting for short span lengths and low losses, 1-4(2022).
[24] Y. You, Z. Jiang, C. Janz. Machine learning-based EDFA gain model, 1-3(2018).
[25] F. da Ros, U. C. de Moura, M. P. Yankov. Machine learning-based EDFA gain model generalizable to multiple physical devices, Tu1A-4(2020).
[27] Z. Jiang, J. Lin, H. Hu. Machine learning based EDFA channel in-band gain ripple modeling, W4I.2(2022).
[29] R. Sommer et al. Multiple filter functions integrated into multi-port GFF components, 1-3(2007).
[33] M. Hashimoto, M. Yoshida, H. Tanaka. The characteristics of WDM systems with hybrid AGC EDFA in the photonics network, 517-518(2002).
[36] Z. Wang, D. Kilper, T. Chen. Transfer learning-based ROADM EDFA wavelength dependent gain prediction using minimized data collection, 1-3(2023).
[37] Y. You, Z. Jiang, C. Janz. OSNR prediction using machine learning-based EDFA models, 1-3(2019).
[39] N. Balakrishnan, K. Débicki et al. Gaussian process: overview. Wiley StatsRef: Statistics Reference Online(2014).
[40] K. Kandasamy, J. Schneider, B. Poczos. Bayesian active learning for posterior estimation, 3605-3611(2015).
[41] E. Brochu, V. M. Cora, N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning(2010).
[42] J. Snoek, H. Larochelle, R. P. Adams. Practical Bayesian optimization of machine learning algorithms, 25(2012).
[43] P. I. Frazier. A tutorial on Bayesian optimization(2018).
[44] Z. Zhong et al. BOW: first real-world demonstration of a Bayesian optimization system for wavelength reconfiguration, F3B.1(2021).
[47] M. P. Yankov, F. Da Ros. Input-output power spectral densities for three C-band EDFAs and four multi-span inline EDFAd fiber optic systems of different lengths(2020).
[49] S. Zhu et al. Hybrid machine learning EDFA model, T4B.4(2020).
[57] X. Ye et al. Experimental prediction and design of ultra-wideband Raman amplifiers using neural networks, W1K.3(2020).
[61] C. M. Bishop. Pattern Recognition and Machine Learning, Information Science and Statistics(2006).
[62] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2017).
Get Citation
Copy Citation Text
Xiaomin Liu, Yihao Zhang, Yuli Chen, Yichen Liu, Meng Cai, Qizhi Qiu, Mengfan Fu, Lilin Yi, Weisheng Hu, Qunbi Zhuge, "Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: a Bayesian approach," Adv. Photon. 6, 026006 (2024)
Category: Research Articles
Received: Jan. 16, 2024
Accepted: Feb. 1, 2024
Posted: Feb. 2, 2024
Published Online: Mar. 27, 2024
The Author Email: Zhuge Qunbi (qunbi.zhuge@sjtu.edu.cn)