Optoelectronic Technology, Volume. 43, Issue 3, 226(2023)

Optimization of Flexible Alternating‑current Electroluminescence Devices and its Integration with Self‑powered Friction Nanogenerator

Yibin LIN1, Wandi CHEN1, Jinjie XU1, Shanshan JIANG1, Yongai ZHANG1,2, Chaoxin WU1,2, Tailiang GUO1,2, and Xiongtu ZHOU1,2
Author Affiliations
  • 1College of Physics and Information Engineering, Fuzhou University, Fuzhou 35008, CHN
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, CHN
  • show less
    References(26)

    [1] Zhang X, Wang F. Recent advances in flexible alternating current electroluminescent devices[J]. APL Materials, 9(2021).

    [2] Yokota T, Zalar P, Kaltenbrunner M et al. Ultraflexible organic photonic skin[J]. Science Advances, 2, 1501856(2016).

    [3] Wang X C, Sun J L, Dong L et al. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator[J]. Nano Energy, 58, 410-418(2019).

    [4] Jayathilaka W, Chinnappan A, Tey J N et al. Alternative current electroluminescence and flexible light emitting devices[J]. Journal of Materials Chemistry C, 7, 5553-5572(2019).

    [5] Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Applied Physics Letters, 70, 152-154(1997).

    [6] Destriau G. Recherches sur les scintillations des sulfures de zinc aux rayons α[J]. Journal de Chimie Physique, 33, 587-625(1936).

    [7] Wang J X, Yan C Y, Lee P S et al. Highly stretchable and self-deformable alternating current electroluminescent devices[J]. Advanced Materials, 27, 2876-2882(2015).

    [8] Wang J X, Yan C Y, Cai G F et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Advanced Materials, 28, 4489-4489(2015).

    [9] Sun J L, Chang Y, Liao J et al. Integrated, self-powered, and omni-transparent flexible electroluminescent display system[J]. Nano Energy, 99, 107392(2022).

    [10] Michael B, Hubert S D. Materials for powder-based AC-electroluminescence[J]. Materials, 3, 1353(2010).

    [11] Fischer A G. Electroluminescent lines in ZnS powder particles[J]. Journal of the Electrochemical Society, 110, 733(1963).

    [12] Kim E H, Han H, Yu S et al. Interactive skin display with epidermal stimuli electrode[J]. Advanced Science, 6, 1802351(2019).

    [13] Lee G, Kong M, Park D et al. Electro-photoluminescence color change for deformable visual encryption[J]. Advanced Materials, 32, 1907477(2020).

    [14] He Y, Zhang M, Zhang N et al. Paper-based ZnS:Cu alternating current electroluminescent devices for current humidity sensors with high-linearity and flexibility[J]. Sensors, 19, 4607(2019).

    [15] Larson C, Peele B, Li S et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 351, 1071-1074(2016).

    [16] Xie P, Mao J, Luo Y. Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability[J]. Journal of Materials Chemistry C, 7, 484-489(2019).

    [17] Zhao C, Zhou Y, Gu S et al. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics[J]. ACS Applied Materials & Interfaces, 12, 47902-47910(2020).

    [18] Tan Y J, Godaba H, Chen G et al. A transparent, self-healing and high-k dielectric for low-field-emission stretchable optoelectronics[J]. Nature Materials, 19, 182-188(2020).

    [19] Chang Y, Sun J L, Dong Lin et al. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices[J]. Nano Energy, 95, 107061(2022).

    [20] Zhang S, Qu C, Xiao Y et al. Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators[J]. Nanoscale, 14, 4244-4253(2022).

    [21] Sun Y, Zhu L, Yang J et al. Flexible alternating-current electroluminescence plunging to below 1 Hz frequency by triboelectrification[J]. Advanced Optical Materials, 10, 2101918(2022).

    [22] Zuo Y, Shi X, Zhou X et al. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers[J]. Advanced Functional Materials, 30, 2005200(2020).

    [24] Shanker R, Cho S, Choe A et al. Solution-processable, high-performance flexible electroluminescent devices based on high-k nanodielectrics[J]. Advanced Functional Materials, 29, 1904377(2019).

    [25] Cho S, Kang D H, Lee H et al. Highly stretchable sound-in-display electronics based on strain-insensitive metallic nanonetworks[J]. Advanced Science, 8, 2001647(2021).

    [26] Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 7, 9533(2013).

    [27] Jsa B, Yu C A, Lin D A et al. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays-science direct[J]. Nano Energy, 86, 106077(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yibin LIN, Wandi CHEN, Jinjie XU, Shanshan JIANG, Yongai ZHANG, Chaoxin WU, Tailiang GUO, Xiongtu ZHOU. Optimization of Flexible Alternating‑current Electroluminescence Devices and its Integration with Self‑powered Friction Nanogenerator[J]. Optoelectronic Technology, 2023, 43(3): 226

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 3, 2023

    Accepted: --

    Published Online: Mar. 21, 2024

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2023.03.007

    Topics