Acta Optica Sinica, Volume. 40, Issue 10, 1015002(2020)

Multi-Scale Feature Fusion Based Adaptive Object Detection for UAV

Fang Liu, Zhiwei Wu*, Anzhe Yang, and Xiao Han
Author Affiliations
  • Information Department, Beijing University of Technology, Beijing 100022, China
  • show less
    Figures & Tables(12)
    Framework of our algorithm
    Schematic diagram of convolution decomposition. (a) Standard convolution process; (b) convolution process after decomposition
    Convolutional neural network residualmodule structure diagram
    Deconvolution cascaded structure
    Adaptive candidate region generation
    Visualization detection results of the proposed algorithm in different situations. (a) Small target detection results; (b) dense target detection results;(c) detection results of target under different illuminations
    • Table 1. Lightweight deep residual network model

      View table

      Table 1. Lightweight deep residual network model

      LayerTypeKernelOutput sizeNumber of output channels
      Xinput224×2243
      Conv_1Convolution3×3,64 stride 2112×11232
      Conv_2Convolution3×3,11×1,643×3,11×1,64×356×5664
      Conv_3Convolution3×3,11×1,1283×3,11×1,128×428×28128
      Conv_4Convolution3×3,11×1,2563×3,11×1,256×614×14256
      Conv_5Convolution3×3,11×1,5123×3,11×1,512×37×7512
    • Table 2. Deconvolution layer parameters

      View table

      Table 2. Deconvolution layer parameters

      LayerTypeKernelStrideOutput size
      h1Deconvolution3×3114×14×256
      h2Deconvolution3×3128×28×256
      h3Deconvolution3×3156×56×256
    • Table 3. Feature extraction network comparison

      View table

      Table 3. Feature extraction network comparison

      ModelSize /MBRatio /%Accuracy /%
      Resnet97.781.3
      LResnet10.210.480.6
    • Table 4. Effectiveness test of each module for different methods%

      View table

      Table 4. Effectiveness test of each module for different methods%

      MethodmAPAP50AP75
      ①Faster-RCN(Resnet50+RPN)18.6335.8717.86
      ②LResnet+RPN18.5235.7517.44
      ③LResnet+DC+RPN21.0338.4618.03
      ④LResnet+DC+GA-RPN(ours)22.1238.7621.53
    • Table 5. Comparison between the results of ten categories from ours model and Faster-RCNN on VisDrone dataset%

      View table

      Table 5. Comparison between the results of ten categories from ours model and Faster-RCNN on VisDrone dataset%

      MethodPedestrianPersonBicycleCarVanTruckTricycleAwnBusMotor
      Faster-RCNN18.347.626.7643.3127.5319.9510.137.6536.878.79
      Ours22.437.618.5650.1834.6324.3414.119.0836.2514.88
    • Table 6. Comparison test of UAV aerial data with mainstream object detection algorithm

      View table

      Table 6. Comparison test of UAV aerial data with mainstream object detection algorithm

      MethodmAP /%AP50 /%AP75 /%Frame rate /(frame·s-1)
      FPN16.5132.2014.916
      YOLOv320.3044.1215.8044
      RetinaNet11.8121.3711.6211
      CornerNet17.4134.1215.7813
      Ours22.1238.7621.5324
    Tools

    Get Citation

    Copy Citation Text

    Fang Liu, Zhiwei Wu, Anzhe Yang, Xiao Han. Multi-Scale Feature Fusion Based Adaptive Object Detection for UAV[J]. Acta Optica Sinica, 2020, 40(10): 1015002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 25, 2019

    Accepted: Feb. 21, 2020

    Published Online: Apr. 28, 2020

    The Author Email: Wu Zhiwei (wuzw_66@163.com)

    DOI:10.3788/AOS202040.1015002

    Topics