Chinese Optics, Volume. 15, Issue 6, 1105(2022)
Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging
[1] [1] COSSAIRT O S, MIAU D, NAYAR S K. Gigapixel Computational Imaging[C]2011 IEEE International Conference on Computational Photography (ICCP). 2011: 18. https:doi.g10.1109ICCPHOT.2011.5753115.
[2] BRADY D J, GEHM M E, STACK R A, et al. Multiscale gigapixel photography[J]. Nature, 486, 386-389(2012).
[3] PARK J, BRADY D J, ZHENG G, et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).
[4] [4] LIU Y, GADEPALLI K, NOUZI M, et al.. Detecting Cancer Metastases on Gigapixel Pathology Images: arXiv: 1703.02442[ROL]. arXiv, 2017[20220521]. http:arxiv.gabs1703.02442.
[5] ZUO, CH, CHEN Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks[J]. Light: Science & Applications, 11, 1639-1642(2022).
[6] [6] CHEN G A. Fourier Ptychographic Imaging; A MATLAB tutial[M]. ISBN: 9781681742731. IOP ebooks. Bristol, UK: IOP Publishing, 2016
[7] MAIT J N, EULISS G W, ATHALE R A. Computational imaging[J]. Advances in Optics and Photonics, 10, 409(2018).
[8] ZUO CH, CHEN Q. Computational optical imaging: An overview[J]. Infrared and Laser Engineering, 51, 20220110(2022).
[9] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 27, 379-423(1948).
[10] HAN SH SH, HU CH Y. Review, current status and prospect of researches on information optical imaging (
[11] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[12] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[13] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J]. Science, 313, 1642-1645(2006).
[14] MOERNER W E, DAVID P. Methods of single-molecule fluorescence spectroscopy and microscopy[J]. Review of Scientific instruments, 74, 3597-3619(2003).
[15] LUKOSZ W. Optical Systems with Resolving Powers Exceeding the Classical Limit[J]. JOSA, 56, 1463-1471(1966).
[16] LUKOSZ W. Optical Systems with Resolving Powers Exceeding the Classical Limit. II[J]. JOSA, 57, 932-941(1967).
[17] PAPOULIS A. Generalized sampling expansion[J]. IEEE Transactions on Circuits and Systems, 24, 652-654(1977).
[18] BROWN J. Multi-channel sampling of low-pass signals[J]. IEEE Transactions on Circuits and Systems, 28, 101-106(1981).
[19] AIRY G B. On the Diffraction of an Object-glass with Circular Aperture[J]. Transactions of the Cambridge Philosophical Society, 5, 283(1835).
[20] RAYLEIGH. XV. On the theory of optical images, with special reference to the microscope[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 167-195(1896).
[21] RAYLEIGH. XXXI. Investigations in optics, with special reference to the spectroscope[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8, 261-274(1879).
[22] ABBE E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für mikroskopische Anatomie, IX, 413-468(1873).
[23] SPARROW C M. On spectroscopic resolving power[J]. The Astrophysical Journal, 44, 76(1916).
[24] [24] GOODMAN J W. Introduction to Fourier Optics[M]. Roberts Company Publishers, 2005.
[25] [25] GOODMAN J W. Statistical optics[M]. Wiley classics library ed. New Yk: Wiley, 2000.
[26] ZUO C, LI J, SUN J, et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[27] FAN Y, LI J, LU L, et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX, 2, 19(2021).
[28] ZUO C, SUN J, LI J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 7, 7654(2017).
[29] SHEPPARD C J R. Partially coherent microscope imaging system in phase space: effect of defocus and phase reconstruction[J]. Journal of the Optical Society of America A, 35, 1846(2018).
[30] [30] Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(14): 6575.https:doi.g10.1016S00304018(01)015565.
[31] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[32] TEAGUE M R. Deterministic phase retrieval: a Green’s function solution[J]. JOSA, 73, 1434-1441(1983).
[33] TIAN L, WALLER L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 23, 11394-11403(2015).
[34] FAN Y, SUN J, CHEN Q, et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. Photonics Research, 7, 890-904(2019).
[35] ZHENG G, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[36] [36] SUN J, ZUO C, ZHANG J, et al.. Highspeed Fourier ptychographic microscopy based on programmable annular illuminations[J]. Scientific Repts, 2018, 8(1)[20180911]. http:www.nature.comarticless41598018257978.
[37] AKONDI V, CASTILLO S, VOHNSEN B. Digital pyramid wavefront sensor with tunable modulation[J]. Optics Express, 21, 18261(2013).
[38] BURVALL A, DALY E, CHAMOT S R, et al. Linearity of the pyramid wavefront sensor[J]. Optics Express, 14, 11925(2006).
[39] ZUO C, SUN J, FENG S, et al. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 80, 24-31(2016).
[40] IGLESIAS I. Pyramid phase microscopy[J]. Optics Letters, 36, 3636(2011).
[41] HOPKINS H H. On the Diffraction Theory of Optical Images[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 217, 408-432(1953).
[42] STREIBL N. Three-dimensional imaging by a microscope[J]. JOSA A, 2, 121-127(1985).
[43] SHEPPARD C J. Defocused transfer function for a partially coherent microscope and application to phase retrieval[J]. JOSA A, 21, 828-831(2004).
[44] [44] MTF Modulation transfer function[EBOL]. [20220522].https:www.telescopeoptics.mtf.htm.
[45] HORSTMEYER R, CHUNG J, OU X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).
[46] ASAKURA T. Resolution of two unequally bright points with partially coherent light[J]. Nouvelle Revue d’Optique, 5, 169-177(1974).
[47] AERT S V, DYCK D V, DEKKER A J den. Resolution of coherent and incoherent imaging systems reconsidered - Classical criteria and a statistical alternative[J]. Optics Express, 14, 3830-3839(2006).
[48] [48] VILLIERS G de, PIKE E R. The Limits of Resolution[MOL]. Boca Raton: CRC Press, 2016. https:doi.g10.12019781315366708.
[49] LATYCHEVSKAIA T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes[J]. Applied Optics, 58, 3597-3603(2019).
[50] COTTE Y, TOY M F, DEPEURSINGE C. Beyond the lateral resolution limit by phase imaging[J]. Journal of biomedical optics, 16, 106007-106007(2011).
[51] HORSTMEYER R, HEINTZMANN R, POPESCU G, et al. Standardizing the resolution claims for coherent microscopy[J]. Nature Photonics, 10, 68-71(2016).
[52] SIGAL Y M, ZHOU R, ZHUANG X. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[53] JERRI A J. The Shannon sampling theorem—Its various extensions and applications: A tutorial review[J]. Proceedings of the IEEE, 65, 1565-1596(1977).
[54] HARDIE R. A Fast Image Super-Resolution Algorithm Using an Adaptive Wiener Filter[J]. IEEE Transactions on Image Processing, 16, 2953-2964(2007).
[55] [55] SJAARDEMA T A, SMITH C S, BIRCH G C. Histy Evolution of the Johnson Criteria. S20156368[ROL]. Sia National Lab. (SNLNM), Albuquerque, NM (United States), 2015[20220522]. https:www.osti.govbiblio1222446.
[56] [56] ROBINSON J, KINCH M, MARQUIS M, et al.. Case f small pixels: system perspective FPA challenge[COL]Image Sensing Technologies: Materials, Devices, Systems, Applications: 9100. SPIE, 2014: 7381[20220522]. https:www.spiedigitallibrary.gconferenceproceedingsofspie910091000ICasefsmallpixelssystemperspectiveFPAchallenge10.111712.2054452.full.
[57] ZHANG J L, CHEN Q, ZHANG X Y, . Lens-free on-chip microscopy:theory, advances, and applications[J]. Infrared and Laser Engineering, 48, 0603009(2019).
[58] BISHARA W, SU T W, COSKUN A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 18, 11181(2010).
[59] SUN J, CHEN Q, ZHANG Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 24, 15765(2016).
[60] FAN Y, SUN J, CHEN Q, et al. Wide-field anti-aliased quantitative differential phase contrast microscopy[J]. Optics Express, 26, 25129(2018).
[61] SHANNON C E. Communication in the Presence of Noise[J]. Proceedings of the IRE, 37, 10-21(1949).
[62] V. LAUVE M. Die Freiheitsgrade von Strahlenbündeln[J]. Annalen der Physik, 349, 1197-1212(1914).
[63] [63] GAB D. IV Light Infmation. This article is the substance of a Ritchie lecture, delivered by the auth on March 2, 1951 at the University of Edinburgh. The contents of the lecture became known to a wider audience through the distribution of a limited number of mimeographed notes, which have since become widely quoted in the literature. The wish has been often expressed that a permanent recd of the lecture should be made generally available. We are glad to be able to meet this wish[MOL]WOLF E. Progress in Optics: 1. Elsevier, 1961: 109153[20220522]. https:www.sciencedirect.comsciencearticlepiiS0079663808706097.
[64] [64] GREIVENKAMP J E. Field Guide to Geometrical Optics[MOL]. 1000 20th Street, Bellingham, WA 982270010 USA: SPIE, 2004[20220522]. http:link.aip.glinkdoi10.11173.547461.
[65] FRANCIA G T di. Resolving Power and Information[J]. JOSA, 45, 497-501(1955).
[66] LOHMANN A W, DORSCH R G, MENDLOVIC D, et al. Space–bandwidth product of optical signals and systems[J]. JOSA A, 13, 470-473(1996).
[67] SLEPIAN D, POLLAK H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — I[J]. Bell System Technical Journal, 40, 43-63(1961).
[68] LANDAU H J, POLLAK H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — II[J]. Bell System Technical Journal, 40, 65-84(1961).
[69] FRANCIA G T di. Degrees of Freedom of an Image[J]. JOSA, 59, 799-804(1969).
[70] [70] TESTF M E, HENNELLY B M, OJEDACASTAEDA J. Phasespace optics: fundamentals applications[MOL]. New Yk: McGrawHill, 2010[20190510]. http:accessengineeringlibrary.combrowsephasespaceopticsfundamentalsapplications.
[71] WIGNER E. On the Quantum Correction For Thermodynamic Equilibrium[J]. Physical Review, 40, 749-759(1932).
[72] DOLIN L. Beam description of weakly-inhomogeneous wave fields[J]. Izv Vyssh Uchebn Zaved Radiofiz, 7, 559-563(1964).
[73] WALTHER A. Radiometry and Coherence[J]. JOSA, 58, 1256-1259(1968).
[74] WALTHER A. Radiometry and coherence[J]. JOSA, 63, 1622-1623(1973).
[75] WALTHER A. Propagation of the generalized radiance through lenses[J]. JOSA, 68, 1606-1610(1978).
[76] BASTIAANS M J. A Frequency-domain Treatment of Partial Coherence[J]. Optica Acta:International Journal of Optics, 24, 261-274(1977).
[77] BASTIAANS M J. The Wigner distribution function applied to optical signals and systems[J]. Optics Communications, 25, 26-30(1978).
[78] BASTIAANS M J. The wigner distribution function and Hamilton’s characteristics of a geometric-optical system[J]. Optics Communications, 30, 321-326(1979).
[79] BASTIAANS M J. Transport Equations for the Wigner Distribution Function[J]. Optica Acta:International Journal of Optics, 26, 1265-1272(1979).
[80] BASTIAANS M J. Wigner distribution function and its application to first-order optics[J]. JOSA, 69, 1710-1716(1979).
[81] BASTIAANS M J. Transport Equations for the Wigner Distribution Function in an Inhomogeneous and Dispersive Medium[J]. Optica Acta:International Journal of Optics, [2021-02-18](1979).
[82] BASTIAANS M J. The Wigner Distribution Function of Partially Coherent Light[J]. Optica Acta:International Journal of Optics, [2021-02-18](1981).
[83] BASTIAANS M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 3, 1227(1986).
[84] [84] ZHENGYUN ZHANG, LEVOY M. Wigner distributions how they relate to the light field[COL]2009 IEEE International Conference on Computational Photography (ICCP). 2009: 110. https:doi.g10.1109ICCPHOT.2009.5559007.
[85] DRAGOMAN D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. JOSA A, 17, 2481-2485(2000).
[86] [86] TESTF M E, FIDDY M A. Superresolution Imaging—Revisited[MOL]Advances in Imaging Electron Physics: 163. Elsevier, 2010: 165218[20220516]. https:linkinghub.elsevier.comretrievepiiS1076567010630054.
[87] [87] TESTF M. PhaseSpace Optics Modern Imaging Systems[J]. 2011: 67.
[88] MENDLOVIC D, LOHMANN A W. Space–bandwidth product adaptation and its application to superresolution: fundamentals[J]. JOSA A, 14, 558-562(1997).
[89] MENDLOVIC D, LOHMANN A W, ZALEVSKY Z. Space–bandwidth product adaptation and its application to superresolution: examples[J]. JOSA A, 14, 563-567(1997).
[90] NEIFELD M A. Information, resolution, and space–bandwidth product[J]. Optics Letters, 23, 1477-1479(1998).
[91] ZHENG G, OU X, HORSTMEYER R, et al. Fourier Ptychographic Microscopy: A Gigapixel Superscope for Biomedicine[J]. Optics and Photonics News, 25, 26-33(2014).
[92] SUN J, ZHANG J, CHEN Q, et al. Fourier ptychographic microscopy theory advances and applications[J]. Acta Optica Sinica, 36, 1011005(2016).
[93] TIAN L, LIU Z, YEH L H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2, 904(2015).
[94] SUN J, CHEN Q, ZHANG J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 43, 3365(2018).
[95] [95] ZALEVSKY Z, MENDLOVIC D, LOHMANN A W. IV Optical systems with improved resolving power[MOL]WOLF E. Progress in Optics: 40. Elsevier, 2000: 271341[20221120]. https:www.sciencedirect.comsciencearticlepiiS0079663800800323.
[96] BACHL A, LUKOSZ W. Experiments on superresolution imaging of a reduced object field[J]. JOSA, 57, 163-169(1967).
[97] [97] TAO C K, TAO C K. Optical Infmation They[M]. Science Press, 1999[20220522].
[98] [98] ZALESVKY Z. Super Resolved Imaging in WignerBased Phase Space[M]PhaseSpace Optics: Fundamentals Applications. McGrawHill New Yk, 2009: 193216.
[99] ZALEVSKY Z, MENDLOVIC D, LOHMANN A W. Understanding superresolution in Wigner space[J]. JOSA A, 17, 2422-2430(2000).
[100] BROWN W M. Synthetic Aperture Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, AES-3, 217-229(1967).
[101] [101] LUCKE R L, RICKARD L J, BASHKANSKY M, et al.. Synthetic aperture ladar (SAL): fundamental they, design equations f a satellite system, labaty demonstration[R]. NAVAL RESEARCH LAB WASHINGTON DC, 2002.
[102] BASHKANSKY M, LUCKE R L, FUNK E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 27, 1983(2002).
[103] BECK S M, BUCK J R, BUELL W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 44, 7621(2005).
[104] [104] GARCÍA J, MICÓ V, GARCÍAMARTÍNEZ P, et al.. Synthetic Aperture Superresolution by Structured Light Projection[COL]AIP Conference Proceedings: 860. Toledo (Spain): AIP, 2006: 136145[20190605]. http:aip.scitation.gdoiabs10.10631.2361214.
[105] GARCÍA J, ZALEVSKY Z, FIXLER D. Synthetic aperture superresolution by speckle pattern projection[J]. Optics Express, 13, 6073(2005).
[106] RICHARD B. Principles of synthetic aperture radar[J]. Surveys in Geophysics, 21, 147-157(2000).
[107] KOCH B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 581-590(2010).
[108] HORSTMEYER R, CHEN R Y, OU X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 17, 053044(2015).
[109] YEH L H, DONG J, ZHONG J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 23, 33214(2015).
[110] ZUO C, SUN J, CHEN Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724(2016).
[111] [111] HOLLOWAY J, ASIF M S, SHARMA M K, et al.. Toward Long Distance, Subdiffraction Imaging Using Coherent Camera Arrays[J]. arXiv: 1510.08470 [physics], 2015[20191218]. http:arxiv.gabs1510.08470.
[112] HOLLOWAY J, WU Y, SHARMA M K, et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Science Advances, 3, e1602564(2017).
[113] [113] KENDRICK R L, DUNCAN A, OGDEN C, et al.. Segmented Planar Imaging Detect f EO Reconnaissance[C]Imaging Applied Optics. Arlington, Virginia: OSA, 2013: CM4C. 1[20210310].
[114] [114] KENDRICK R L, DUNCAN A, OGDEN C, et al.. Flatpanel spacebased space surveillance sens[C]Advanced maui optical space surveillance technologies conference. 2013: E45.
[115] KATZ B, ROSEN J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Optics Express, 18, 962-972(2010).
[116] CHEN Q. Discussions on the development of advanced night vision imaging technology[J]. Infrared and Laser Engineering, 51, 20220128(2022).
[117] GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of microscopy, 198, 82-87(2000).
[118] EGGELING C, WILLIG K I, SAHL S J, et al. Lens-based fluorescence nanoscopy[J]. Quarterly reviews of biophysics, 48, 178-243(2015).
[119] KNER P, CHHUN B B, GRIFFIS E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature methods, 6, 339(2009).
[120] GUSTAFSSON M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences, 102, 13081-13086(2005).
[121] LI D, SHAO L, CHEN B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 349, aab3500-aab3500(2015).
[122] MICÓ V, ZHENG J, GARCIA J, et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135(2019).
[123] GAO P, PEDRINI G, OSTEN W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 38, 1328(2013).
[124] WICKER K, HEINTZMANN R. Resolving a misconception about structured illumination[J]. Nature Photonics, 8, 342-344(2014).
[125] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences, 97, 8206-8210(2000).
[126] HELL S W. Far-Field Optical Nanoscopy[J]. Science, 316, 1153-1158(2007).
[127] WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 440, 935(2006).
[128] HELL S W, SAHL S J, MARK B M et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 48, 443001(2015).
[129] HESS S T, GIRIRAJAN T P, MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical journal, 91, 4258-4272(2006).
[130] DI FRANCIA G T. Super-gain antennas and optical resolving power[J]. Il Nuovo Cimento (, -1954),1952,9, 426-438(1943).
[131] MARTÍNEZ-CORRAL M, ANDRÉS P, OJEDA-CASTAÑEDA J, et al. Tunable axial superresolution by annular binary filters. Application to confocal microscopy[J]. Optics Communications, 119, 491-498(1995).
[132] SALES T R, MORRIS G M. Diffractive superresolution elements[J]. JOSA A, 14, 1637-1646(1997).
[133] SHEPPARD C, CALVERT G, WHEATLAND M. Focal distribution for superresolving toraldo filters[J]. JOSA A, 15, 849-856(1998).
[134] ZHANG Y. Design of three-dimensional superresolving binary amplitude filters by using the analytical method[J]. Optics Communications, 274, 37-42(2007).
[135] AHARONOV Y, ANANDAN J, POPESCU S, et al. Superpositions of time evolutions of a quantum system and a quantum time-translation machine[J]. Physical review letters, 64, 2965(1990).
[136] BERRY M V. Evanescent and real waves in quantum billiards and Gaussian beams[J]. Journal of Physics A:Mathematical and General, 27, L391(1994).
[137] BERRY M. Faster than fourier[J]. Quantum Coherence and Reality, 55-65(1994).
[138] BERRY M, DENNIS M. Natural superoscillations in monochromatic waves in D dimensions[J]. Journal of Physics A:Mathematical and Theoretical, 42, 022003(2008).
[139] DENNIS M R, HAMILTON A C, COURTIAL J. Superoscillation in speckle patterns[J]. Optics letters, 33, 2976-2978(2008).
[140] HUANG K, YE H, TENG J, et al. Optimization-free superoscillatory lens using phase and amplitude masks: Optimization-free Super-oscillatory Lens[J]. Laser & Photonics Reviews, 8, 152-157(2014).
[141] ROGERS E T F, QURAISHE S, ROGERS K S, et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination[J]. APL Photonics, 5, 066107(2020).
[142] FERREIRA P J S, KEMPF A. Superoscillations: faster than the Nyquist rate[J]. IEEE transactions on signal processing, 54, 3732-3740(2006).
[143] ZALEVSKY Z, GARCÍA-MARTÍNEZ P, GARCÍA J. Superresolution using gray level coding[J]. Optics express, 14, 5178-5182(2006).
[144] STERN A, JAVIDI B. Sampling in the light of Wigner distribution[J]. JOSA A, 21, 360-366(2004).
[145] STERN A, JAVIDI B. Sampling in the light of Wigner distribution: errata[J]. JOSA A, 21, 2038-2038(2004).
[146] PAPOULIS A. Pulse compression, fiber communications, and diffraction: a unified approach[J]. JOSA A, 11, 3-13(1994).
[147] STERN A. Sampling of linear canonical transformed signals[J]. Signal Processing, 86, 1421-1425(2006).
[148] UNSER M, ZERUBIA J. A generalized sampling theory without band-limiting constraints[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 45, 959-969(1998).
[149] ROMBERG J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 14-20(2008).
[150] CANDÈS E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on information theory, 52, 489-509(2006).
[151] BRADY D J, CHOI K, MARKS D L, et al. Compressive holography[J]. Optics express, 17, 13040-13049(2009).
[152] [152] TAKHAR D, LASKA J N, WAKIN M B, et al.. A new compressive imaging camera architecture using opticaldomain compression[C]Computational Imaging IV: 6065. SPIE, 2006: 4352.
[153] [153] GLASNER D, BAGON S, IRANI M. Superresolution from a single image[COL]2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 349356[20190605]. http:ieeexple.ieee.gdocument5459271.
[154] [154] HUANG J B, SINGH A, AHUJA N. Single image superresolution from transfmed selfexemplars[COL]2015 IEEE Conference on Computer Vision Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015: 51975206[20190605]. http:ieeexple.ieee.gdocument7299156.
[155] KWANG IN KIM, YOUNGHEE KWON. Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1127-1133(2010).
[156] WANG D, FU T, BI G, et al. Long-Distance Sub-Diffraction High-Resolution Imaging Using Sparse Sampling[J]. Sensors, 20, 3116(2020).
[157] XIANG M, PAN A, ZHAO Y Y, . et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography[J]. Optics Letters, 46, 29-32(2021).
[158] BIONDI F. Recovery of partially corrupted SAR images by super-resolution based on spectrum extrapolation[J]. IEEE Geoscience and Remote Sensing Letters, 14, 139-143(2016).
[159] BHATTACHARJEE S, SUNDARESHAN M K. Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution[J]. JOSA A, 20, 1516-1527(2003).
[160] ELAD M, DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of a single image[J]. The Computer Journal, 52, 15-30(2009).
[161] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Single-image super-resolution via linear mapping of interpolated self-examples[J]. IEEE Transactions on image processing, 23, 5334-5347(2014).
[162] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 38, 295-307(2015).
[163] ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 146, 106717(2021).
[164] B. Wang, Y. Zou, L. Zhang, Y. Hu, H. Yan, C. Zuo, et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network[J]. Photonics, 8, 321(2021).
[165] WANG B, ZOU Y, ZHANG L, et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Optics and Lasers in Engineering, 156, 107078(2022).
[166] DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[167] [167] DONG C, LOY C C, HE K, et al.. Learning a Deep Convolutional wk f Image SuperResolution[COL]FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 184199.https:doi.g10.10079783319105932_13.
[168] [168] CHAKRABARTI A. A Neural Approach to Blind Motion Deblurring[COL]LEIBE B, MATAS J, SEBE N, et al. Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 221235. https:doi.g10.10079783319464879_14.
[169] [169] HE K, ZHANG X, REN S, et al.. Deep Residual Learning f Image Recognition[COL]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778[20221120]. https:openaccess.thecvf.comcontent_cvpr_2016htmlHe_Deep_Residual_Learning_CVPR_2016_paper.html.
[170] [170] SHOCHER A, COHEN N, IRANI M. “ZeroShot” SuperResolution using Deep Internal Learning[J]. arXiv: 1712.06087 [cs, eess], 2017[20211217]. http:arxiv.gabs1712.06087.
[171] [171] ZHANG K, VAN GOOL L, TIMOFTE R. Deep Unfolding wk f Image SuperResolution[COL]2020 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 32143223[20211217]. https:ieeexple.ieee.gdocument9157092.
[172] [172] LUO Z, HUANG Y, LI S, et al.. Endtoend Alternating Optimization f Blind Super Resolution[J]. arXiv: 2105.06878 [cs], 2021[20211022]. http:arxiv.gabs2105.06878.
[173] [173] Lim B, Son S, Kim H, et al.. Enhanced Deep Residual wks f Single Image SuperResolution: IEEE, 10.1109CVPRW.2017.151[P]. 2017.
[174] [174] HE K, ZHANG X, REN S, et al.. Deep residual learning f image recognition[C]Proceedings of the IEEE conference on computer vision pattern recognition. 2016: 770778.
[175] [175] RONNEBERGER O, FISCHER P, BROX T. U: Convolutional wks f biomedical image segmentation[C]International Conference on Medical image computing computerassisted intervention. Springer, 2015: 234241.
[176] [176] GELSMAN Y, SHOCHER A, IRANI M. “DoubleDIP”: Unsupervised Image Decomposition via Coupled DeepImagePris[COL]2019 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 1101811027[20211224]. https:ieeexple.ieee.gdocument8954420.
[177] [177] KIM S Y, SIM H, KIM M. KOALA: Blind SuperResolution using Kerneliented Adaptive Local Adjustment[C]. 10.48550arXiv.2012.081032020.
[178] [178] ZHANG K, ZUO W, GU S, et al.. Learning Deep CNN Denoiser Pri f Image Restation[COL]2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017: 28082817[20220427]. http:ieeexple.ieee.gdocument8099783.
[179] [179] TAO G, JI X, WANG W, et al.. SpectrumtoKernel Translation f Accurate Blind Image SuperResolution[A]. Advances in Neural Infmation Processing Systems[C]. Curran Associates, Inc., 2021, 34: 2264322654.
[180] [180] ZHANG L J, GU K, VAN GOOL S, L., et al.. Flow based kernel pri with application to blind superresolution[C]. IEEE Conference on Computer Vision Pattern Recognition (CVPR) . 2021: 10601–10610.
[181] [181] LI X, SUO J, ZHANG W, et al.. Universal Flexible Optical Aberration Crection Using DeepPri Based Deconvolution[COL]2021 IEEECVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 25932601[20220426]. https:ieeexple.ieee.gdocument9710104.
[182] [182] CAI J, ZENG H, YONG H, et al.. Toward RealWld Single Image SuperResolution: A New Benchmark a New Model[COL]2019 IEEECVF International Conference on Computer Vision (ICCV). Seoul, Kea (South): IEEE, 2019: 30863095[20211022]. https:ieeexple.ieee.gdocument9009805.
[183] [183] WANG X, XIE L, DONG C, et al.. RealESRGAN: Training RealWld Blind SuperResolution with Pure Synthetic Data[COL]2021 IEEECVF International Conference on Computer Vision Wkshops (ICCVW). Montreal, BC, Canada: IEEE, 2021: 19051914[20220425]. https:ieeexple.ieee.gdocument9607421.
[184] [184] NAZERI K, THASARATHAN H, EBRAHIMI M. EdgeInfmed Single Image SuperResolution[J]. arXiv: 1909.05305 [cs, eess], 2019[20210224]. http:arxiv.gabs1909.05305.
[185] UNSER M, ALDROUBI A. A general sampling theory for nonideal acquisition devices[J]. IEEE Transactions on Signal Processing, 42, 2915-2925(1994).
[186] [186] VEWALLE P, SSSTRUNK S, VETTERLI M. A Frequency Domain Approach to Registration of Aliased Images with Application to Superresolution[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006(1)[20190605]. https:aspeurasipjournals.springeropen.comarticles10.1155ASP200671459.
[187] NGUYEN N, MILANFAR P. A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution)[J]. Circuits Systems and Signal Processing, 19, 321-338(2000).
[188] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing, 53, 231-239(1991).
[189] CHEN J, LI Y, CAO L. Research on region selection super resolution restoration algorithm based on infrared micro-scanning optical imaging model[J]. Scientific Reports, 11, 1-8(2021).
[190] ZHANG X, HUANG W, XU M, et al. Super-resolution imaging for infrared micro-scanning optical system[J]. Optics express, 27, 7719-7737(2019).
[191] DAI S sheng, LIU J song, XIANG H yan, et al. Super-resolution reconstruction of images based on uncontrollable microscanning and genetic algorithm[J]. Optoelectronics Letters, 10, 313-316(2014).
[192] HUSZKA G, GIJS M A. Turning a normal microscope into a super-resolution instrument using a scanning microlens array[J]. Scientific reports, 8, 1-8(2018).
[193] GUNTURK B K, ALTUNBASAK Y, MERSEREAU R M. Super-resolution reconstruction of compressed video using transform-domain statistics[J]. IEEE Transactions on Image Processing, 13, 33-43(2004).
[194] [194] CABANSKI W A, BREITER R, MAUK K H, et al.. Miniaturized highperfmance starring thermal imaging system[C]Infrared Detects Focal Plane Arrays VI: International Society f Optics Photonics, 2000: 208219.
[195] [195] WANG B, ZUO C, SUN J, et al.. A computational superresolution technique based on coded aperture imaging[COL]PETRUCCELLI J C, TIAN L, PREZA C. Computational Imaging V. Online Only, United States: SPIE, 2020: 25[20201013].https:www.spiedigitallibrary.gconferenceproceedingsofspie113962560579Acomputationalsuperresolutiontechniquebasedoncodedapertureimaging10.111712.2560579.full.
[196] [196] PAN GIGA. HighResolution images panamic photography GigaPixel images[EBOL]. [20210308]. http:gigapan.com.
[197] SAKO T, SEKIGUCHI T, SASAKI M, et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand[J]. Experimental Astronomy, 22, 51-66(2008).
[198] [198] Gaia (spacecraft)[EBOL]Wikipedia. (20210222)[20210308]. https:en.wikipedia.gwindex.php title = Gaia (spacecraft) & oldid = 1008206925.
[199] [199] VERA C. Rubin Observaty[EBOL]Wikipedia. (20210305)[20210308]. https:en.wikipedia.gwindex.php title = Vera C. Rubin Observaty&oldid = 1010481905.
[200] ZHAO G, ZHAO Y H, CHU Y Q, et al. LAMOST spectral survey—An overview[J]. Research in Astronomy and Astrophysics, 12, 723(2012).
[201] [201] ARGUSIS[EBOL]Wikipedia. (20200715)[20210308]. https:en.wikipedia.gwindex.php title = ARGUSIS & oldid = 967762056.
[202] [202] WILBURN B, JOSHI N, VAISH V, et al. Highspeed videography using a dense camera array[COL]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2004. CVPR 2004.: 2. 2004: IIII. https:doi.g10.1109CVPR.2004.1315176.
[203] [203] WILBURN B, JOSHI N, VAISH V, et al. High Perfmance Imaging Using Large Camera Arrays[M]ACM SIGGRAPH 2005 Papers. 2005: 765776.
[204] [204] A 360 degree camera that sees in 3D (wVideo)[EBOL]. [20210308]. https:phys.gnews201012degreecamera3dvideo.html.
[205] [205] COGAL O, AKIN A, SEYID K, et al. A new omnidirectional multicamera system f high resolution surveillance[C]Mobile MultimediaImage Processing, Security, Applications 2014: 9120. International Society f Optics Photonics, 2014: 91200N.
[206] [206] LAW N M, FS O, RATZLOFF J, et al. The Evryscope: design perfmance of the first fullsky gigapixelscale telescope[C]Groundbased Airbne Telescopes VI: 9906. International Society f Optics Photonics, 2016: 99061M.
[207] LAW N M, FORS O, RATZLOFF J, et al. Evryscope science: exploring the potential of all-sky gigapixel-scale telescopes[J]. Publications of the Astronomical Society of the Pacific, 127, 234(2015).
[208] BRADY D J, HAGEN N. Multiscale lens design[J]. Optics express, 17, 10659-10674(2009).
[209] [209] BRADY D J. Focus in multiscale imaging systems[C]. Computational Optical Sensing Imaging, 2012: CM2B1.
[210] TREMBLAY E J, MARKS D L, BRADY D J, et al. Design and scaling of monocentric multiscale imagers[J]. Applied Optics, 51, 4691-4702(2012).
[211] MARKS D L, BRADY D J. Close-up imaging using microcamera arrays for focal plane synthesis[J]. Optical Engineering, 50, 033205(2011).
[212] MARKS D L, TREMBLAY E J, FORD J E, et al. Microcamera aperture scale in monocentric gigapixel cameras[J]. Applied Optics, 50, 5824-5833(2011).
[213] [213] MARKS D L, BRADY D J. Gigagon: a Monocentric Lens Design Imaging 40 Gigapixels[COL]Imaging Systems (2010), paper ITuC2. Optica Publishing Group, 2010: ITuC2[20221120]. https:opg.optica.gabstract.cfmuri=IS2010ITuC2.
[214] SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics[J]. Optics Express, 19, 16132-16138(2011).
[215] [215] SON H S, MARKS D L, TREMBLAY E, et al.. A Multiscale, Wide Field, Gigapixel Camera[COL]Imaging Applied Optics (2011), paper JTuE2. Optica Publishing Group, 2011: JTuE2[20221120]. https:opg.optica.gabstract.cfmuri=COSI2011JTuE2.
[216] MARKS D L, LLULL P R, PHILLIPS Z, et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager[J]. Applied optics, 53, C54-C63(2014).
[217] LLULL P, BANGE L, PHILLIPS Z, et al. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2, 1086-1089(2015).
[218] [218] Popular Science. Superoscillation its application in optics: beyond the diffraction limit[EBOL]. Zhihu. [20220522]. https:zhuanlan.zhihu.comp88964582.
[219] [219] GOODMAN J W. Holography Viewed from the Perspective of the Light Field Camera[MOL]OSTEN W. Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 315[20220516]. http:link.springer.com10.10079783642363597_1.
[220] GAO P, YUAN C. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review[J]. Light:Advanced Manufacturing, 3, 105-120(2022).
[221] MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. JOSA A, 23, 3162-3170(2006).
[222] MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Applied Optics, 45, 822-828(2006).
[223] GRANERO L, MICÓ V, ZALEVSKY Z, et al. Superresolution imaging method using phase-shifting digital lensless Fourier holography[J]. Optics Express, 17, 15008-15022(2009).
[224] MICÓ V, FERREIRA C, GARCÍA J. Surpassing digital holography limits by lensless object scanning holography[J]. Optics Express, 20, 9382-9395(2012).
[225] MICO V, ZALEVSKY Z, GARCÍA J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution[J]. Optics Communications, 281, 4273-4281(2008).
[226] MICÓ V, GARCÍA J. Common-path phase-shifting lensless holographic microscopy[J]. Optics Letters, 35, 3919-3921(2010).
[227] MICÓ V, ZALEVSKY Z, GARCIA J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator[J]. Optics Letters, 37, 4988-4990(2012).
[228] CHOI W, FANG-YEN C, BADIZADEGAN K, et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).
[229] Mirsky S K, Shaked N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Optics Express, 27, 26708(2019).
[230] MICÓ V, ZALEVSKY Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J]. Journal of Biomedical Optics, 15, 046027(2010).
[231] SANZ M, PICAZO-BUENO J A, GARCÍA J, et al. Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm[J]. Optics Express, 23, 21352-21365(2015).
[232] PICAZO-BUENO J Á, ZALEVSKY Z, GARCÍA J, et al. Superresolved spatially multiplexed interferometric microscopy[J]. Optics Letters, 42, 927-930(2017).
[233] MICO V, FERREIRA C, ZALEVSKY Z, et al. Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one[J]. Optics Express, 22, 14929-14943(2014).
[234] CHOWDHURY S, ELDRIDGE W J, WAX A, et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy[J]. Biomedical Optics Express, 8, 2496(2017).
[235] COTTE Y, TOY F, JOURDAIN P, et al. Marker-free phase nanoscopy[J]. Nature Photonics, 7, 113-117(2013).
[236] GABAI H, SHAKED N T. Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints[J]. Optics Express, 20, 26906(2012).
[237] GIRSHOVITZ P, SHAKED N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light:Science & Applications, 3, e151(2014).
[238] FRENKLACH I, GIRSHOVITZ P, SHAKED N T. Off-axis interferometric phase microscopy with tripled imaging area[J]. Optics Letters, 39, 1525(2014).
[239] OU X, ZHENG G, YANG C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 22, 4960(2014).
[240] SUN J, CHEN Q, ZHANG Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 7, 1336(2016).
[241] DONG S, SHIRADKAR R, NANDA P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 5, 1757(2014).
[242] TIAN L, LI X, RAMCHANDRAN K, et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).
[243] LI P, BATEY D J, EDO T B, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 158, 1-7(2015).
[244] TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104(2015).
[245] ZUO C, SUN J, LI J, et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. Optics and Lasers in Engineering, 128, 106003(2020).
[246] BIAN L, SUO J, SITU G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 39, 6648-6651(2014).
[247] HE X, LIU C, ZHU J. Single-shot Fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 43, 214(2018).
[248] LEE B, HONG J young, YOO D, et al. Single-shot phase retrieval via Fourier ptychographic microscopy[J]. Optica, 5, 976-983(2018).
[249] ZHENG G, SHEN C, JIANG S, et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).
[250] PAN A, ZUO C, YAO B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Reports on Progress in Physics, 83, 096101(2020).
[251] CUI X, LEE L M, HENG X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 105, 10670-10675(2008).
[252] XU W, JERICHO M H, MEINERTZHAGEN I A, et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences, 98, 11301-11305(2001).
[253] SU T wei, SEO S, ERLINGER A, et al. Towards Wireless Health: Lensless On-Chip Cytometry[J]. Optics and Photonics News, 19, 24-24(2008).
[254] [254] ISIKMAN S, SEO S, SENCAN I, et al.. Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction[COL]2009 IEEE LEOS Annual Meeting Conference Proceedings. 2009: 404405.https:doi.g10.1109LEOS.2009.5343233.
[255] ZHENG G, LEE S A, ANTEBI Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 108, 16889-16894(2011).
[256] SEO S, SU T W K, TSENG D, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 9, 777-787(2009).
[257] GREENBAUM A, LUO W, SU T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 9, 889-895(2012).
[258] ELSER V. Phase retrieval by iterated projections[J]. JOSA A, 20, 40-55(2003).
[259] GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 20, 3129-3143(2012).
[260] ZHANG Y, PEDRINI G, OSTEN W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 11, 3234-3241(2003).
[261] MUDANYALI O, TSENG D, OH C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 10, 1417-1428(2010).
[262] LUO W, ZHANG Y, GÖRÖCS Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 6, 22738(2016).
[263] ZUO C, SUN J, ZHANG J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 23, 14314(2015).
[264] GREENBAUM A, ZHANG Y, FEIZI A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 6, 267ra175-267ra175(2014).
[265] ZHANG J, SUN J, CHEN Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 7, 11777(2017).
[266] LUO W, ZHANG Y, FEIZI A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science & Applications, 5, e16060-e16060(2016).
[267] ZHANG J, CHEN Q, LI J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 43, 3714-3717(2018).
[268] BISHARA W, SIKORA U, MUDANYALI O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 11, 1276(2011).
[269] WU X, SUN J, ZHANG J, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 46, 2023(2021).
[270] LI J, CHEN Q, SUN J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 26, 27599(2018).
[271] BULBUL A, VIJAYAKUMAR A, ROSEN J. Partial aperture imaging by systems with annular phase coded masks[J]. Optics Express, 25, 33315-33329(2017).
[272] LI J, CHEN Q, ZHANG J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J]. Biomedical Optics Express, 8, 4687-4705(2017).
[273] PAPOULIS A. A new algorithm in spectral analysis and band-limited extrapolation[J]. IEEE Transactions on Circuits and Systems, 22, 735-742(1975).
[274] GERCHBERG R, SAXTON W. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. Optik (Jena), 35, 237(1972).
[275] GERCHBERG R W. Phase determination from image and diffraction plane pictures in the electron microscope[J]. Optik, 34, 275-284(1971).
[276] DONOHO D L, JOHNSTONE I M, HOCH J C, et al. Maximum Entropy and the Nearly Black Object[J]. Journal of the Royal Statistical Society. Series B (Methodological), 54, 41-81(1992).
[277] SHIEH H M, BYRNE C L. Image reconstruction from limited Fourier data[J]. Journal of the Optical Society of America A, 23, 2732(2006).
[278] SHIEH H M, BYRNE C L, FIDDY M A. Image reconstruction: a unifying model for resolution enhancement and data extrapolation. Tutorial[J]. JOSA A, 23, 258-266(2006).
[279] MARCHESINI S, HE H, CHAPMAN H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 68, 140101(2003).
[280] SHIEH H M, HSU Y C, BYRNE C L, et al. Resolution enhancement of imaging small-scale portions in a compactly supported function[J]. Journal of the Optical Society of America A, 27, 141(2010).
[281] LATYCHEVSKAIA T, FINK H W. Resolution enhancement in digital holography by self-extrapolation of holograms[J]. Optics Express, 21, 7726-7733(2013).
[282] HUANG Z, CAO L. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction[J]. Optics and Lasers in Engineering, 130, 106090(2020).
[283] KOSAREV E L. Shannon’s superresolution limit for signal recovery[J]. Inverse Problems, 6, 55-76(1990).
[284] NARIMANOV E. Resolution limit of label-free far-field microscopy[J]. Advanced Photonics, 1, 1(2019).
[285] RADON J. On the determination of functions from their integral values along certain manifolds[J]. IEEE Transactions on Medical Imaging, 5, 170-176(1986).
[286] WOLF E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1, 153-156(1969).
[287] CHARRIÈRE F, MARIAN A, MONTFORT F, et al. Cell refractive index tomography by digital holographic microscopy[J]. Optics Letters, 31, 178(2006).
[288] CHARRIÈRE F, PAVILLON N, COLOMB T, et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba[J]. Optics Express, 14, 7005(2006).
[289] SUNG Y, CHOI W, FANG-YEN C, et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).
[290] KIM K, YOON H, DIEZ-SILVA M, et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography[J]. Journal of Biomedical Optics, 19, 011005(2013).
[291] SCHERMELLEH L, CARLTON P M, HAASE S, . et al. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy[J]. Science, 320, 1332-1336(2008).
[292] LI J, CHEN Q, SUN J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 9, 2526-2542(2018).
[293] ZHOU S, LI J, SUN J, et al. Accelerated Fourier ptychographic diffraction tomography with sparse annular LED illuminations[J]. Journal of Biophotonics, 15, e202100272(2022).
[294] ZHOU N, ZHOU N, LI J, et al. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography[J]. Optics Letters, 47, 969-972(2022).
[295] LIM J, LEE K, JIN K H, et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[J]. Optics Express, 23, 16933(2015).
[296] HECHT B, SICK B, WILD U P, et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications[J]. The Journal of Chemical Physics, 112, 7761-7774(2000).
[297] HAO XIANG, YANG QING, KUANG CUIFANG, et al. Optical Super-Resolution Imaging Based on Frequency Shift[J]. Acta Optica Sinica, 41, 0111001(2021).
[298] WEI F, LU D, SHEN H, et al. Wide Field Super-Resolution Surface Imaging through Plasmonic Structured Illumination Microscopy[J]. Nano Letters, 14, 4634-4639(2014).
[299] WEI F, LIU Z. Plasmonic Structured Illumination Microscopy[J]. Nano Letters, 10, 2531-2536(2010).
[300] ZHOU Z, LIU W, HE J, et al. Far-field super-resolution imaging by nonlinearly excited evanescent waves[J]. Advanced Photonics, 3, 025001(2021).
[301] BARBASTATHIS G, OZCAN A, SITU G. On the use of deep learning for computational imaging[J]. Optica, 6, 921(2019).
[302] ZUO CHAO, FENG SHIJIE, ZHANG XIANGYU, et al. Deep Learning Based Computational Imaging: Status, Challenges, and Future[J]. Acta Optica Sinica, 40, 0111003(2020).
[303] ZUO C, QIAN J, FENG S, et al. Deep learning in optical metrology: a review[J]. Light:Science & Applications, 11, 39(2022).
[304] WANG H, RIVENSON Y, JIN Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).
[305] RIVENSON Y, GÖRÖCS Z, GÜNAYDIN H, et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).
[306] QIAO C, LI D, GUO Y, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).
Get Citation
Copy Citation Text
Chao ZUO, Qian CHEN. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J]. Chinese Optics, 2022, 15(6): 1105
Category: Review
Received: Jun. 2, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: