Journal of Quantum Optics, Volume. 30, Issue 4, 41001(2024)
Balanced Photodetectors Based on Transimpedance Amplifiers with OPA847 and OPA657
[3] [3] KUMAR R, BARRIOS E, MACRAE A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Optics Communications, 2012, 285(24): 5259‒5267. DOI: 10.1016/j.optcom.2012.07.103.
[4] [4] LU Q, SHEN Q, CAO Y, et al. Ultra-low-noise balanced detectors for optical time-domain measurements[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1048‒1055. DOI: 10.1109/TNS.2018.2885364.
[5] [5] WANG J R, WANG Q W, TIAN L, et al. A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1~100 kHz range[J]. Chinese Physics B, 2020, 29(3): 034205. DOI: 10.1088/1674-1056/ab683b.
[6] [6] HUANG D, FANG J, WANG C, et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chinese Physics Letters, 2013, 30(11): 114209. DOI: 10.1088/0256-307X/30/11/114209.
[7] [7] WANG R, CHEN L, ZHAO Y, et al. A high signal-to-noise ratio balanced detector system for 2 m coherent wind lidar[J]. Review of Scientific Instruments, 2020, 91(7): 073101. DOI: 10.1063/1.5144829.
[8] [8] LIANG C, WANG C, XUE X, et al. Meter-scale and sub-second-resolution coherent Doppler wind LIDAR and hyperfine wind observation[J]. Optics Letters, 2022, 47(13): 3179‒3182. DOI: 10.1364/OL.465307.
[9] [9] ZHU J, HU P, TAN J. Homodyne laser vibrometer capable of detecting nanometer displacements accurately by using optical shutters[J]. Applied Optics, 2015, 54(34): 10196‒10199. DOI: 10.1364/AO.54.010196.
[10] [10] FU H, XINKANG X, WANG Z, et al. Homodyne laser vibrometer modified by an LCVR for measurement at the nanometer level[J]. Applied Optics, 2022, 61(3): 775‒782. DOI: 10.1364/AO.446469.
[11] [11] JOSHI A, BECKER D, WREE C, et al. Coherent optical receiver system with balanced photodetection, Conference on Enabling Photonics Technologies for Defense, Security, and Aerospace Applications II[C]. Bellingham (USA): SPIE Press, 2006: 62430E. DOI: 10.1117/12.664194.
[12] [12] BACH H G. Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond, Conference on Active and Passive Optical Components for WDM Communications V[C]. Bellingham (USA): SPIE Press, 2005: 60140B. DOI: 10.1117/12.630509.
[15] [15] VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801. DOI: 10.1103/PhysRevLett.117.110801.
[16] [16] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865‒942. DOI: 10.1103/RevModPhys.81.865.
[17] [17] ROTHBERG S J, ALLEN M S, CASTELLINI P, et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement[J]. Optics and Lasers in Engineering, 2017, 99: 11‒22. DOI: 10.1016/j.optlaseng.2016.10.023.
[18] [18] SHANGGUAN M, QIU J, YUAN J, et al. Doppler wind lidar from UV to NIR: a review with case study examples[J]. Frontiers in Remote Sensing, 2022, 2: 787111. DOI: 10.3389/frsen.2021.787111.
[19] [19] KIASALEH K. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence[J]. IEEE Transactions on Communications, 2006, 54(4): 604‒607. DOI: 10.1109/TCOMM.2006.873067.
[20] [20] ZHOU K C, QIAN R, DEGAN S, et al. Optical coherence refraction tomography[J]. Nature Photonics, 2019, 13(11): 794‒802. DOI: 10.1038/s41566-019-0508-1.
[21] [21] BOUMA B E, DE BOER J F, HUANG D, et al. Optical coherence tomography[J]. Nature Reviews Methods Primers, 2022, 2(1): 79. DOI: 10.1038/s43586-022-00162-2.
[22] [22] ALEXANDER S B. Optical communication receiver design[M]. Bellingham, Wash., USA: London, UK: SPIE Optical Engineering Press; Institution of Electrical Engineers, 1997: 126‒139.
[23] [23] THORLABS INC. Balanced amplified photodetectors with fast monitor output[EB/OL]. [2024-04-12]. https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=5201.
[24] [24] HAMAMATSU PHOTONICS CO LTD. Balanced detectors[EB/OL]. [2024-04-12]. https://www.hamamatsu.com/us/en/product/optical-sensors/photodiodes/balanced-detectors.
[25] [25] JIN X, SU J, ZHENG Y, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Optics Express, 2015, 23(18): 23859. DOI: 10.1364/OE.23.023859.
[26] [26] MACKOWIAK V, PEUPELMANN J, MA Y, et al. NEP-noise equivalent power[EB/OL]. [2024-04-12]. https://www.thorlabschina.cn/images/TabImages/Noise_Equivalent_Power_White_Paper.pdf.
[27] [27] LI Z, LIU J, GUO F, et al. 20 MHz resonant photodetector for the homodyne measurement of picosecond pulsed squeezed light[J]. Optics Continuum, 2023, 2(2): 490‒497. DOI: 10.1364/OPTCON.481271.
[29] [29] RAMUS X. Transimpedance considerations for high-speed amplifiers, Texas Instruments, 2009. [Online]. Available: https://www.ti.com/lit/an/sboa122/sboa122.pdf.
[30] [30] TEXAS INSTRUMENTS INC. OPA847 datasheet[EB/OL].[2024-04-12]. https://www.ti.com/cn/lit/ds/symlink/opa847.pdf?ts=171271811169&ref_url=https%253A%252F%252Fso.szlcsc.com%252F.
[31] [31] TEXAS INSTRUMENTS INC. OPA657 datasheet[EB/OL].[2024-04-12]. https://www.ti.com/cn/lit/ds/symlink/opa657.pdf?ts=171271662-2717&ref_url=https%253A%252F%252Fso.szlcsc.com%252F.
[32] [32] HAMAMATSU PHOTONICS CO LTD. G14942-32 datasheet[EB/OL]. [2024-04-12]. https://www.hamamatsu.com.cn/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/g14942-32_kird1147e.pdf.
[33] [33] GRAEME J. Photodiode amplifiers: op amp solutions[M]. New York: McGraw-Hill Inc., 1995: 42−50.
Get Citation
Copy Citation Text
WANG Ding-kang, WU Jin-ze, SONG Zhi-gang, LI Jin-hong. Balanced Photodetectors Based on Transimpedance Amplifiers with OPA847 and OPA657[J]. Journal of Quantum Optics, 2024, 30(4): 41001
Category:
Received: May. 13, 2024
Accepted: Feb. 26, 2025
Published Online: Feb. 26, 2025
The Author Email: WU Jin-ze (wujinze@tyust.edu.cn)