Optics and Precision Engineering, Volume. 31, Issue 6, 872(2023)
Single heading-line survey of MGTS for magnetic target pattern recognition
[1] SHEINKER A, GINZBURG B, SALOMONSKI N et al. Magnetic anomaly detection using high-order crossing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 1095-1103(2012).
[2] YIN G, ZHANG Y, FAN H et al. Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data[J]. Journal of Applied Geophysics, 128, 131-139(2016).
[3] DAVID WIGH M, HANSEN T M, DØSSING A. Inference of unexploded ordnance (UXO) by probabilistic inversion of magnetic data[J]. Geophysical Journal International, 220, 37-58(2020).
[4] PAOLETTI V, BUGGI A, PAŠTEKA R. UXO detection by multiscale potential field methods[J]. Pure and Applied Geophysics, 176, 4363-4381(2019).
[5] KIM H M, HEO C G, CHO S H et al. Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors[J]. IEEE Transactions on Magnetics, 54, 1-5(2018).
[6] YIN G, ZHANG L. Three-dimensional reconstruction of a small-scale magnetic target from magnetic gradient observations[J]. Journal of Magnetism and Magnetic Materials, 482, 229-238(2019).
[7] CLARK D A. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength[J]. Exploration Geophysics, 43, 267-282(2012).
[8] [8] 8尹刚, 张英堂, 米松林, 等. 基于倾斜角和Helbig方法的多磁源目标反演技术[J]. 上海交通大学学报, 2017, 51(5): 577-584.YING, ZHANGY T, MIS L, et al. Multiple magnetic targets inversion technique based on tilt angle and helbig method[J]. Journal of Shanghai Jiao Tong University, 2017, 51(5): 577-584.(in Chinese)
[9] LI J P, ZHANG Y T, FAN H B et al. Estimating the location of magnetic sources using magnetic gradient tensor data[J]. Exploration Geophysics, 50, 600-612(2019).
[10] LI Q Z, SHI Z Y, LI Z N et al. Magnetic object positioning based on second-order magnetic gradient tensor system[J]. IEEE Sensors Journal, 21, 18237-18248(2021).
[11] LI Q Z, SHI Z Y, LI Z N et al. Preferred configuration and detection limits estimation of magnetic gradient tensor system[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-14(2021).
[12] JAIN A K, DUIN R P W, MAO J C. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4-37(2000).
[13] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 70, 489-501(2006).
[14] SNYDSMAN W E, AMINZADEH F, WEIL C B. Pattern recognition in geophysical exploration[C], 53-60(1987).
[15] CALDERÓN-MACÍAS C, SEN M K, STOFFA P L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting, 48, 21-47(2000).
[16] FERN. NDEZ J P, BARROWES B, O’NEILL K,[C]. FERN, 6217, 25-32(225).
[17] ANISH C. A pattern recognition based approach to consistency analysis of geophysical datasets[J]. Computers & Geosciences, 36, 464-476(2010).
[18] EHRET B. Pattern recognition of geophysical data[J]. Geoderma, 160, 111-125(2010).
[19] [19] 19谢永茂. 基于模板匹配的局部磁异常识别方法[D]. 北京: 中国地质大学(北京), 2012.XIEY M. Recognition of Magnetic Local Anomaly Based on Template Matching[D]. Beijing: China University of Geosciences, 2012. (in Chinese)
[20] [20] 20李昌珑, 李宗超, 吕红山, 等. 基于三维图像模式识别的西藏东南部地震灾害损失风险评估[J]. 地球物理学报, 2019, 62(1): 393-410. doi: 10.6038/cjg2019M0360LIC L, LIZ C, LÜH S, et al. Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition[J]. Chinese Journal of Geophysics, 2019, 62(1): 393-410.(in Chinese). doi: 10.6038/cjg2019M0360
[21] ZHENG J, FAN H, ZHANG Q et al. Magnetic anomaly target recognition based on SVD and SVMs[J]. IEEE Transactions on Magnetics, 55, 1-8(2019).
[22] ZHENG J Y, FAN H B, YIN G et al. A method of using geomagnetic anomaly to recognize objects based on HOG and 2D-AVMD[J]. AIP Advances, 9(2019).
[23] ZHOU Z J, ZHANG M, CHEN J F et al. Detection and classification of multi-magnetic targets using mask-RCNN[J]. IEEE Access, 8, 187202-187207(2020).
[24] HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 6, 376-390(2014).
[25] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 8, 22-34(2020).
[26] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews: computational statistics, 2, 433-459(2010).
[27] [27] 27李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统传感器阵列的快速旋转校准[J]. 光学 精密工程, 2018, 26(7): 1813-1826. doi: 10.3788/ope.20182607.1813LIQ Z, LIZ N, ZHANGY T, et al. Fast rotation calibration of sensor array in magnetic gradient tensor system[J]. Opt. Precision Eng., 2018, 26(7): 1813-1826.(in Chinese). doi: 10.3788/ope.20182607.1813
[28] [28] 28李青竹, 李志宁, 张英堂, 等. 张量衍生不变关系下的磁源单点定位[J]. 光学 精密工程, 2019, 27(8): 1880-1893. doi: 10.3788/ope.20192708.1880LIQ Z, LIZ N, ZHANGY T, et al. Magnetic source single-point positioning by tensor derivative invariant relations[J]. Opt. Precision Eng., 2019, 27(8): 1880-1893.(in Chinese). doi: 10.3788/ope.20192708.1880
[29] [29] 29马国庆, 李丽丽, 杜晓娟. 磁张量数据的边界识别和解释方法[J]. 石油地球物理勘探, 2012, 47(5): 815-821, 844, 682.MAG Q, LIL L, DUX J. Boundary detection and interpretation by magnetic gradient tensor data[J]. Oil Geophysical Prospecting, 2012, 47(5): 815-821, 844, 682.(in Chinese)
[30] DANIELA, GEROVSKA, DANIELA, GEROVSKA. Determination of the parameters of compact Ferro-metallic objects with transforms of magnitude magnetic anomalies[J]. Journal of Applied Geophysics, 55, 173-186(2004).
[31] STAVREV P, GEROVSKA D. Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity[J]. Geophysical Prospecting, 48, 317-340(2000).
[32] ZHANG J, MA W, LIN J et al. Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence[J]. Measurement, 59, 73-87(2015).
[33] [33] 33孙世政, 于竞童, 韩宇, 等. 基于SSA-ELM的双层十字梁结构光纤布拉格光栅传感器三维力解耦[J]. 光学 精密工程, 2022, 30(3): 274-285. doi: 10.37188/OPE.2021.0549SUNS Z, YUJ T, HANY, et al. FBG sensor of double-layer cross beam structure based on SSA-ELM three-dimensional force decoupling[J]. Opt. Precision Eng., 2022, 30(3): 274-285.(in Chinese). doi: 10.37188/OPE.2021.0549
[34] YANLONG, ZHU, YANLONG, ZHU. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm[J]. International Journal of Hydrogen Energy, 46, 9541-9552(2021).
[35] CHENGLONG, ZHANG, CHENGLONG, ZHANG. A stochastic configuration network based on chaotic sparrow search algorithm[J]. Knowledge-Based Systems, 220, 106924(2021).
[36] [36] 36马飞燕, 李向新. 基于改进麻雀搜索算法-核极限学习机耦合算法的滑坡位移预测模型[J]. 科学技术与工程, 2022, 22(5): 1786-1793. doi: 10.3969/j.issn.1671-1815.2022.05.008MAF Y, LIX X. Landslide displacement prediction model using improved SSA-KELM coupling algorithm[J]. Science Technology and Engineering, 2022, 22(5): 1786-1793.(in Chinese). doi: 10.3969/j.issn.1671-1815.2022.05.008
Get Citation
Copy Citation Text
Qingzhu LI, Zhining LI, Zhiyong SHI, Hongbo FAN. Single heading-line survey of MGTS for magnetic target pattern recognition[J]. Optics and Precision Engineering, 2023, 31(6): 872
Category: Information Sciences
Received: May. 29, 2022
Accepted: --
Published Online: Apr. 4, 2023
The Author Email: Zhining LI (lgdsxq@163.com)