Chinese Journal of Lasers, Volume. 48, Issue 6, 0602118(2021)
Technology and Mechanism on Warm Laser Shock Imprinting of Aluminum Foils
[1] Liu Y P, Shi Z J, Zhao Y Z et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening[J]. Chinese Journal of Lasers, 47, 0502006(2020).
[2] Zhou J Z, Yang J C, Zhang Y K et al. A study on super-speed forming of metal sheet by laser shock waves[J]. Journal of Materials Processing Technology, 129, 241-244(2002).
[3] Wang J, Li M, Wang J X et al. Effects of laser shock processing on fatigue life of 304 stainless steel[J]. Chinese Journal of Lasers, 46, 0102003(2019).
[4] Tian X L, Zhou J Z, Li J et al. Effect of cryogenic laser peening on microstructure of 2024-T351 aluminum alloy[J]. Chinese Journal of Lasers, 46, 0902004(2019).
[5] Liao Y L, Ye C, Kim B J et al. Nucleation of highly dense nanoscale precipitates based on warm laser shock peening[J]. Journal of Applied Physics, 108, 063518(2010).
[6] Zhou J Z, Meng X K, Huang S et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering: A, 643, 86-95(2015).
[7] Cheng G J, Pirzada D. Characterizations on microscale laser dynamic forming of metal foil[EB/OL]. (2008-10-02)[2020-04-25] https://appliedmechanics.asmedigitalcollection.asme.org/MSEC/proceedings-abstract/MSEC2006/47624/29/319862..
[8] Liu H X, Shen Z B, Wang X et al. Micromould based laser shock embossing of thin metal sheets for MEMS applications[J]. Applied Surface Science, 256, 4687-4691(2010).
[9] Zheng C, Zhang X, Zhang Y L et al. Effects of laser power density and initial grain size in laser shock punching of pure copper foil[J]. Optics and Lasers in Engineering, 105, 35-42(2018).
[10] Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. Journal of Microelectromechanical Systems, 19, 273-281(2010).
[11] Ehrhardt M. Processes at multi-pulse laser embossing of submicron surface structures[J]. Journal of Laser Micro, 9, 252-256(2014).
[12] Gao H, Hu Y, Xuan Y et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 346, 1352-1356(2014).
[13] Yang H F, Xiong F, Liu K et al. Research on temperature-assisted laser shock imprinting and forming stability[J]. Optics and Lasers in Engineering, 114, 95-103(2019).
[14] Yang H F, Xiong F, Wang Y et al. Manufacturing profile-free copper foil using laser shock flattening[J]. International Journal of Machine Tools and Manufacture, 152, 103542(2020).
[15] Yang H F, Jia L, Liu K et al. High precision complete forming process of metal microstructure induced by laser shock imprinting[J]. The International Journal of Advanced Manufacturing Technology, 108, 143-155(2020).
[16] Li Y H, He W F, Zhou L C. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica (Technologica), 45, 1-8(2015).
[17] Wang Y, Xu J X, Zhang J et al. Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: a tight-binding quantum chemical molecular dynamics simulation[J]. Carbon, 133, 350-357(2018).
[18] Tong Y Q. Study on mechanism and application fundamentals of laser removal of metal oxides[D]. Zhenjiang: Jiangsu University(2014).
[19] Tong Y Q, Lu Q H, Zhou J Z et al. On‐line plasma spectrum detection of laser cleaning of aluminum alloy before welding[J]. Spectroscopy and Spectral Analysis, 40, 255-260(2020).
[20] Lu J Z, Deng W W, Luo K Y et al. Surface EBSD analysis and strengthening mechanism of AISI304 stainless steel subjected to massive LSP treatment with different pulse energies[J]. Materials Characterization, 125, 99-107(2017).
[21] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).
[22] Nagarajan B, Castagne S, Wang Z K et al. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming[J]. Applied Physics A, 121, 695-706(2015).
[23] An X H, Lin Q Y, Wu S D et al. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion[J]. Philosophical Magazine, 91, 3307-3326(2011).
Get Citation
Copy Citation Text
Haifeng Yang, Jiaxiang Man, Fei Xiong, Mingtian Shi. Technology and Mechanism on Warm Laser Shock Imprinting of Aluminum Foils[J]. Chinese Journal of Lasers, 2021, 48(6): 0602118
Category: Laser Material Processing
Received: Jul. 17, 2020
Accepted: Sep. 4, 2020
Published Online: Mar. 6, 2021
The Author Email: Man Jiaxiang (4841@cumt.edu.cn)