Laser Technology, Volume. 46, Issue 2, 155(2022)
Research progress of several novel generation methods of large dispersion
[1] [1] LI J, ZHENG Y, DAI Y, et al. Ultralarge dispersion of microwave signals[C]//Conference on Lasers and Electro-Optics. California, USA: Applications & Technology, 2018:62-67.
[2] [2] LI J, DAI Y, YIN F, et al. Megahertz-resolution programmable microwave shaper[J]. Optics Letters, 2018, 43(8): 1878-1881.
[3] [3] ZHANG W, ZHANG X, WANG C, et al. Optical computing optical coherence tomography with conjugate suppression by dispersion[J]. Optics Letters, 2019, 44(8): 2077-2080.
[4] [4] ZHANG Y, ROBERTSON I D. Prediction of secondary dispersion for the design of dispersion-tailored microstructured fibers[J]. Journal of Lightwave Technology, 2010, 29(2): 135-145.
[5] [5] SCHICKETANZ D W, EOLL C K. Material dispersion of graded-index fibers from numerical aperture measurements[J]. Applied Optics, 1990, 29(27): 3916-3920.
[6] [6] SUN W J, DONG Ch. The mechanism of the electromagnetically induced transparency and the ultraslow speed of light[J]. Physics and Engineering, 2004, 14(4): 24-25(in Chinese).
[7] [7] HSIAO S S, CHEN K T, YU I A. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution[J]. Optics Express, 2020,28(19):28414-28429.
[8] [8] THVENAZ L. Slow and fast light in optical fibres[J]. Nature Photonics, 2008, 2(8): 474-481.
[9] [9] HAU L V, HARRIS S E, DUTTON Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.
[10] [10] SAFAVI-NAEINI A H, ALEGRE T P M, CHAN J, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69-73.
[11] [11] WU Ch Q, YUAN B Zh. Slow light and all-optical buffers[J]. Physics, 2005,34(12):922-926(in Chinese).
[12] [12] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50-30,000eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342.
[13] [13] TIMOFEEV A S. Variants of the light pulses controlling under conditions of double radio-optical resonance[J].IOP Publishing, 2014, 572(1): 012042.
[14] [14] SAKAMOTO T, MORI T, YAMAMOTO T, et al. Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique[J]. Optics Express, 2011, 19(26): 478-485.
[15] [15] SHEMIRANI M B, KAHN J M. Higher-order modal dispersion in graded-index multimode fiber[J]. Journal of Lightwave Technology, 2009, 27(23): 5461-5468.
[16] [16] CHEN G X, LU H M, CHEN Y, et al. Fundamentals of optical fiber communication technology[M].Beijing: Higher Education Press, 2010:20-50(in Chinese).
[17] [17] DIEBOLD E D, HON N K, TAN Z, et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 2011, 19(24): 23809-23817.
[18] [18] ZHU Y, GREENBERG J A, HUSEIN N A, et al. Giant all-optical tunable group velocity dispersion in an optical fiber[J]. Optics Express, 2014, 22(12): 14382-14391.
[19] [19] LIAO R, HON N K, BUCKLEY B W, et al. Chromo-modal dispersion for optical communication and time-stretch spectroscopy[J]. Optics Letters, 2021, 46(3): 500-503.
[20] [20] TAN Zh W, QIN F J, REN W H, et al. Application of fiber dispersion in all optical data processing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080023(in Chinese).
[21] [21] GAMBLING W A, PAYNE D N, MATSUMURA H. Mode conversion coefficients in optical fibers[J]. Applied Optics, 1975, 14(7): 1538-1542.
[22] [22] GLOGE D. Optical power flow in multimode fibers[J]. Bell System Technical Journal, 1972, 51(8): 1767-1783.
[23] [23] WANG X. Research on the key technology and implementation of wideband digital receiver[D]. Harbin:Harbin Engineering University,2008:13-37(in Chinese).
[24] [24] LIANG Y H. Research on photonic-assisted compressive sampling technique [D]. Beijing :Tsinghua University, 2014:12-40(in Chinese).
[25] [25] ZHOU J, FU S, SHUM P P, et al. Photonic measurement of microwave frequency based on phase modulation[J]. Optics Express, 2009, 17(9): 7217-7221.
[26] [26] DIDDAMS S A, HOLLBERG L, MBELE V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 2007, 445(7128): 627-630.
[27] [27] CHATELLUS H G D, CORTS L R, AZAA J. Optical real-time Fourier transformation with kilohertz resolutions[J]. Optica, 2016, 3(1): 1-8.
[28] [28] DAI Y, LI J, ZHANG Z, et al. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion[J]. Optics Express, 2017, 25(14): 16660-16671.
[29] [29] ZHENG Y, LI J, DAI Y, et al. Real-time Fourier transformation based on the bandwidth magnification of RF signals[J]. Optics Le-tters, 2018, 43(2): 194-197.
[30] [30] DAS R, SCHNEIDER T. Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals[J]. Optics Le-tters, 2020, 45(17): 4778-4781.
[31] [31] JANNSON T. Real-time Fourier transformation in dispersive optical fibers[J]. Optics Letters, 1983, 8(4): 232-234.
[32] [32] GODA K, JALALI B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.
[33] [33] XU Y, WEI X, REN Z, et al. Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry[J]. Scientific Reports, 2016, 6:27937.
[34] [34] SAPERSTEIN R E, PANASENKO D, FAINMAN Y. Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber[J]. Optics Letters, 2004, 29(5): 501-503.
[35] [35] DUAN Y, CHEN L, ZHOU H, et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification[J]. Optics Express, 2017, 25(7): 7520-7529.
[36] [36] GODA K, SOLLI D R, TSIA K K, et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review, 2009, A80(4): 043821.
[37] [37] SOLLI D R, CHOU J, JALALI B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2008, 2(1): 48-51.
[38] [38] KONG M L,TAN Zh W, ZHANG L. Application and implementation of optical fourier transform based on optical fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110701(in Chinese).
[39] [39] SALEM R, FOSTER M A, GAETA A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 2013, 5(3): 274-317.
[40] [40] GODA K, JALALI B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.
[41] [41] TONG Y C, CHAN L Y, TSANG H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11): 983-985.
[42] [42] MURIEL M A, AZAA J, CARBALLAR A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 1999, 24(1): 1-3.
[43] [43] HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.
[44] [44] WANG L, YAN F P, LI Y F, et al. Optimization of chirped fiber Bragg gratings by asymmetrically apodization method[J]. Acta Optica Sinica, 2007,27(4): 587-592(in Chinese).
[45] [45] van HAOWE J, XU C. Ultrafast optical signal processing based upon space-time dualities[J]. Journal of Lightwave Technology, 2006, 24(7): 2649-2662.
[46] [46] ZHENG Y. Real-time Fourier transformation based on bandwidth magnification[D]. Beijing :Beijing University of Posts and Telecommunications, 2019:10-15(in Chinese).
Get Citation
Copy Citation Text
NIU Hui, TAN Zhongwei, LU Shun. Research progress of several novel generation methods of large dispersion[J]. Laser Technology, 2022, 46(2): 155
Category:
Received: Feb. 2, 2021
Accepted: --
Published Online: Mar. 8, 2022
The Author Email: TAN Zhongwei (zhwtan@bjtu.edu.cn)