Remote Sensing Technology and Application, Volume. 39, Issue 1, 77(2024)

Remote Sensing Monitoring of Phyllostachys Pubescens Expanding Fir Forests based on Phenological Features

Xiafan YAN1,2、*, Bifeng CAO3, Jihong SHI1,2, Xueting LU1,2, Xianfen SONG1,2, Jian LIU1,2, and Kunyong YU1,2
Author Affiliations
  • 1College of Forestry,Fujian Agriculture and Forestry University,Fuzhou 350002,China
  • 2Fujian Province Key Laboratory of 3S Technology and Optimal Utilization of Resources,Fuzhou 350002,China
  • 3Yong’an Forestry Bureau,Sanming 360000,China
  • show less
    Figures & Tables(13)
    Location of the Study Area
    Dynamics of CVI at different levels of expansion
    Dynamics of YF at different levels of expansion
    Sample schematic
    Dynamics of stand density under different levels of Exoansion
    Dynamics of LAI at different levels of expansion
    The relationship between the apparent characteristic composite index and the degree of expansion
    Dynamics of apparent characteristic composite index at different levels of expansion
    • Table 1. Composite Vegetation Index principal component analysis

      View table
      View in Article

      Table 1. Composite Vegetation Index principal component analysis

      类别DVIRVINRINDVIGNDVIWDRVIMSAVI特征值贡献率/%
      主成分10.400.920.940.960.940.960.4368.43
      主成分20.92-0.30-0.12-0.13-0.06-0.190.9025.94
      主成分30.030.17-0.300.22-0.330.200.034.52
      主成分40.020.180.09-0.12-0.10-0.050.020.99
      主成分50.000.04-0.06-0.020.05-0.010.000.11
      主成分60.020.000.000.010.00-0.01-0.020.01
      主成分70.010.000.00-0.010.000.020.000.01
    • Table 2. Forest density accuracy verification

      View table
      View in Article

      Table 2. Forest density accuracy verification

      2020年单株两株三株其他总和生产者精度/%2021年单株两株三株其他总和生产者精度/%
      总体精度=78.40% Kappa=0.692总体精度=73.60% Kappa=0.637
      单株1133917016991.13单株1302962318881.76
      两株711820114669.01两株2210532216172.92
      三株311139515878.53三株066016761.22
      其他131222778.57其他740738473.74
      总和12417117728500总和1591449899500
      使用者精度/%66.8680.8287.9781.48使用者精度/%69.1565.2289.5586.90
    • Table 3. Correlation between different pixel estimates and LAI

      View table
      View in Article

      Table 3. Correlation between different pixel estimates and LAI

      植被指数不同窗口
      0.06 m×0.06 m0.1 m×0.1 m0.3 m×0.3 m0.5 m×0.5 m1 m×1 m3 m×3 m5 m×5 m
      DVI0.267*0.267*0.267*0.266*0.2530.2170.120
      RVI0.675**0.675**0.673**0.666**0.673**0.596**0.387**
      NRI0.551**0.550**0.550**0.534**0.564**0.533**0.286*
      NDVI0.720**0.720**0.718**0.718**0.722**0.714**0.435**
      GNDVI0.554**0.554**0.556**0.539**0.564**0.544**0.332**
      WDRVI0.719**0.719**0.716**0.715**0.719**0.697**0.439**
      MSAVI0.286*0.286*0.285*0.284*0.272*0.2330.136
    • Table 4. Analysis of LAI Estimation Models at Different Spatial Resolutions

      View table
      View in Article

      Table 4. Analysis of LAI Estimation Models at Different Spatial Resolutions

      0.060.10.30.5
      R2RA/%RMSER2RA/%RMSER2RA/%RMSER2RA/%RMSE
      单变量0.4487.120.690.4487.120.690.4687.000.690.4686.990.69
      RF0.4686.020.730.4586.000.730.4486.170.720.4785.910.74
      SVM0.4686.700.710.4586.650.710.4686.750.700.4386.760.70
      135
      R2RA/%RMSER2RA/%RMSER2RA/%RMSE
      单变量0.4587.290.680.4886.820.690.3286.370.69
      RF0.5086.750.680.5685.800.740.3985.810.74
      SVM0.4686.960.690.4486.950.680.2586.720.69
    • Table 5. Vegetation composite index principal component analysis

      View table
      View in Article

      Table 5. Vegetation composite index principal component analysis

      CVIYF林分密度LAI特征值贡献率/%
      主成分10.480.710.560.6236.08
      主成分20.71-0.22-0.660.2926.95
      主成分3-0.30-0.510.140.6820.88
      主成分40.41-0.440.48-0.2416.10
    Tools

    Get Citation

    Copy Citation Text

    Xiafan YAN, Bifeng CAO, Jihong SHI, Xueting LU, Xianfen SONG, Jian LIU, Kunyong YU. Remote Sensing Monitoring of Phyllostachys Pubescens Expanding Fir Forests based on Phenological Features[J]. Remote Sensing Technology and Application, 2024, 39(1): 77

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 6, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: Xiafan YAN (982223240@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.1.0077

    Topics