Laser & Optoelectronics Progress, Volume. 61, Issue 23, 2306003(2024)
Modal Decomposition of Hermite-Gaussian Beams Through Deep Learning
Fig. 1. 6 modes of light intensity. (a) HG00 mode; (b) HG10 mode; (c) HG01 mode; (d) HG20 mode; (e) HG11 mode; (f) HG02 mode
Fig. 2. Experimental device diagram of generating 6 modes of light intensity diagram
Fig. 3. Mode decomposition flowchart of network model. (a) An overall flowchart of light intensity diagram pattern decomposition; (b) diagram of overall structure of Swin Transformer network
Fig. 4. Theoretical light intensity graph training result graph. (a) Trend of weight MSE; (b) trend of phase MSE
Fig. 5. Experimental light intensity map training results. (a) Trend of weighted MSE; (b) trend of phase MSE
Fig. 6. Light intensity diagram, phase diagram, and weight phase comparison diagrams of test sample. (a) Experimental light intensity diagram; (b) theoretical light intensity diagram; (c) theoretical phase diagram; (d) reconstructed theoretical light intensity diagram; (e) reconstructed theoretical phase diagram; (f) weight comparison diagram of true and predicted values; (g) phase comparison diagram of true and predicted values
|
|
Get Citation
Copy Citation Text
shu Peng, Xulian Guo, Tianbao Ma, Kui Liu, Jiangrui Gao. Modal Decomposition of Hermite-Gaussian Beams Through Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2306003
Category: Fiber Optics and Optical Communications
Received: Feb. 5, 2024
Accepted: Apr. 18, 2024
Published Online: Dec. 4, 2024
The Author Email: Kui Liu (liukui@sxu.edu.cn)
CSTR:32186.14.LOP240667