Laser & Optoelectronics Progress, Volume. 61, Issue 23, 2306003(2024)

Modal Decomposition of Hermite-Gaussian Beams Through Deep Learning

shu Peng1, Xulian Guo1, Tianbao Ma1, Kui Liu1,2、*, and Jiangrui Gao1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    Figures & Tables(8)
    6 modes of light intensity. (a) HG00 mode; (b) HG10 mode; (c) HG01 mode; (d) HG20 mode; (e) HG11 mode; (f) HG02 mode
    Experimental device diagram of generating 6 modes of light intensity diagram
    Mode decomposition flowchart of network model. (a) An overall flowchart of light intensity diagram pattern decomposition; (b) diagram of overall structure of Swin Transformer network
    Theoretical light intensity graph training result graph. (a) Trend of weight MSE; (b) trend of phase MSE
    Experimental light intensity map training results. (a) Trend of weighted MSE; (b) trend of phase MSE
    Light intensity diagram, phase diagram, and weight phase comparison diagrams of test sample. (a) Experimental light intensity diagram; (b) theoretical light intensity diagram; (c) theoretical phase diagram; (d) reconstructed theoretical light intensity diagram; (e) reconstructed theoretical phase diagram; (f) weight comparison diagram of true and predicted values; (g) phase comparison diagram of true and predicted values
    • Table 1. Comparison of prediction error between Swin Transformer and VGG16

      View table

      Table 1. Comparison of prediction error between Swin Transformer and VGG16

      Error itemΔρ002Δρ102Δρ012Δρ202Δρ112Δρ022
      Swin Transformer0.018800.016430.016820.003560.003220.00320
      VGG160.035500.035500.036000.018500.032400.01640
      Error itemΔθ10Δθ01Δθ20Δθ11Δθ02EPE
      Swin Transformer0.014000.014140.016120.017030.017500.01670
      VGG160.039200.037700.043900.044100.044200.01330
    • Table 2. Error in weight and phase of experimental data on the validation set

      View table

      Table 2. Error in weight and phase of experimental data on the validation set

      Error itemΔρ002Δρ102Δρ012Δρ202Δρ112Δρ022
      Averaged0.05200.05620.05600.04470.04830.041
      Error itemΔθ10Δθ01Δθ20Δθ11Δθ02EPE
      Averaged0.15970.17010.16220.16080.15770.1317
    Tools

    Get Citation

    Copy Citation Text

    shu Peng, Xulian Guo, Tianbao Ma, Kui Liu, Jiangrui Gao. Modal Decomposition of Hermite-Gaussian Beams Through Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2306003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Feb. 5, 2024

    Accepted: Apr. 18, 2024

    Published Online: Dec. 4, 2024

    The Author Email: Kui Liu (liukui@sxu.edu.cn)

    DOI:10.3788/LOP240667

    CSTR:32186.14.LOP240667

    Topics