Journal of Quantum Optics, Volume. 28, Issue 3, 262(2022)
Subwavelength Optical Lenses Based on 2D Materials
[1] [1] YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2):139-150. DOI: 10.1038/nmat3839.
[2] [2] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. DOI: 10.1126/science.1210713.
[3] [3] LIN D, FAN P, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194):298-302. DOI: 10.1126/science.1253213.
[4] [4] VAN DE GROEP J, SONG J H, CELANO U, et al. Exciton resonance tuning of an atomically thin lens[J]. Nature Photonics, 2020, 14(7):426-430. DOI: 10.1038/s41566-020-0624-y.
[6] [6] KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1):20-24. DOI: 10.1038/nmat3443.
[7] [7] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2):10-35. DOI: 10.1109/MAP.2012.6230714.
[8] [8] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. science, 2013, 339(6125): 1232009. DOI: 10.1126/science.1232009.
[9] [9] YU N, GENEVET P, AIETA F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3):4700423. DOI: 10.1109/JSTQE.2013.2241399.
[10] [10] GEIM A K, NOVOSELOV K S. The rise of graphene[M]. Nanoscience and technology: a collection of reviews from nature journals. World Scientific, 2010:11-19. DOI: 10.1142/9789814287005_0002.
[11] [11] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8):1-15. DOI: 10.1038/natrevmats.2017.33.
[12] [12] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two‐dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005. DOI: 10.1002/adma.201304138.
[13] [13] DONG R, ZHANG T, FENG X. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13):6189-6235. DOI: 10.1021/acs.chemrev.8b00056.
[14] [14] KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549):656-660. DOI: 10.1038/nature14417.
[15] [15] ANICIN B, BABOVIC V, DAVIDOVIC D. Fresnel lenses[J]. American Journal of Physics, 1989, 57(4):312-316. DOI: 10.1119/1.16071.
[16] [16] RASTANI K, MARRAKCHI A, HABIBY S F, et al. Binary phase Fresnel lenses for generation of two-dimensional beam arrays[J]. Applied Optics, 1991, 30(11):1347-1354. DOI: 10.1364/AO.30.001347.
[17] [17] KONG X-T, KHAN A A, KIDAMBI P R, et al. Graphene-based ultrathin flat lenses[J]. Acs Photonics, 2015, 2(2):200-207. DOI: 10.1021/ph500197j.
[18] [18] NI H, YUAN G, SUN L, et al. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36):20117-20123. DOI: 10.1039/C8RA02644K.
[19] [19] PARK J S, ZHANG S, SHE A, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Letters, 2019, 19(12):8673-8682. DOI: 10.1021/acs.nanolett.9b03333.
[20] [20] LI W, HE P, YUAN W, et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Nanoscale, 2020, 12(13):7063-7071. DOI: 10.1039/C9NR10697A.
[21] [21] LI W, YU Y, YUAN W. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1):311-320. DOI: 10.1039/C8NR07985D.
[22] [22] KIVSHAR Y. All-dielectric meta-optics and non-linear nanophotonics[J]. National Science Review, 2018, 5(2):144-158. DOI: 10.1093/nsr/nwy017.
[23] [23] WEST P R, STEWART J L, KILDISHEV A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21):26212-26221. DOI: 10.1364/OE.22.026212.
[24] [24] NAIK G V, LIU J, KILDISHEV A V, et al. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials[J]. Proceedings of the National Academy of Sciences, 2012, 109(23):8834-8838. DOI: 10.1073/pnas.1121517109.
[25] [25] LEE H, LOW M J, LIM C H J, et al. Transferable ultra-thin multi-level micro-optics patterned by tunable photoreduction and photoablation for hybrid optics[J]. Carbon, 2019, 149:572-581. DOI: 10.1016/j.carbon.2019.04.085.
[26] [26] SATO S. Applications of liquid crystals to variable-focusing lenses[J]. Optical Review, 1999, 6(6):471-485. DOI: 10.1007/s10043-999-0471-z.
[27] [27] NAUMOV A, LOKTEV M Y, GURALNIK I, et al. Liquid-crystal adaptive lenses with modal control[J]. Optics Letters, 1998, 23(13):992-994. DOI: 10.1364/OL.23.000992.
[28] [28] WANG B, YE M, HONMA M, et al. Liquid crystal lens with spherical electrode[J]. Japanese Journal of Applied Physics, 2002, 41(11A):L1232. DOI: 10.1143/JJAP.41.L1232.
[29] [29] REN H, WU S T. Tunable electronic lens using a gradient polymer network liquid crystal[J]. Applied Physics Letters, 2003, 82(1):22-24. DOI: 10.1063/1.1534915.
[30] [30] REN H, FAN Y H, GAUZA S, et al. Tunable-focus flat liquid crystal spherical lens [J]. Applied Physics Letters, 2004, 84(23):4789-4791. DOI: 10.1063/1.1760226.
[31] [31] ZHOU Y, YIN Y, YUAN Y, et al. Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses[J]. Liquid Crystals, 2019, 46(7):995-1000. DOI: 10.1080/02678292.2018.1550820.
[32] [32] Huang Y P, Chen C W, Huang Y C. Fast response Fresnel liquid crystal lens for 2D/3D autostereoscopic display[C]. // Advances in Display Technologies; and E-papers and Flexible Displays. SPIE, 2011, 7956:165-170. DOI: 10.1117/12.880032.
[33] [33] SOVA O, GALSTIAN T. Modal control refractive Fresnel lens with uniform liquid crystal layer[J]. Optics Communications, 2020, 474:126056. DOI: 10.1016/j.optcom.2020.126056.
[34] [34] DOU H, WANG L, CHU F, et al. A blue phase liquid crystal Fresnel lens with large transverse electric field component[J]. Liquid Crystals, 2021, 48(5):607-615. DOI: 10.1143/JJAP.18.1679.
[35] [35] SATO S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 1979, 18(9):1679. DOI: 10.3390/cryst9050272.
[36] [36] ALGORRI J F, ZOGRAFOPOULOS D C, URRUCHI V, et al. Recent advances in adaptive liquid crystal lenses[J]. Crystals, 2019, 9(5):272. DOI: 10.3390/cryst9050272.
[37] [37] KUMAR M B, KANG D, JUNG J, et al. Ultrathin, polarization-independent, and focus-tunable liquid crystal diffractive lens for augmented reality[Preprint]. arXiv:1902.10889 [physics.optics], 2019. DOI: 10.48550/arXiv.1902.10889.
[38] [38] LIN S H, LI C Y, KUO C T, et al. Fresnel lenses in 90° twisted-nematic liquid crystals with optical and electrical controllability[J]. IEEE Photonics Technology Letters, 2016, 28(13):1462-1464. DOI: 10.1109/LPT.2016.2555699.
[39] [39] AVCI N, LEE Y H, HWANG S J. Switchable polarisation-independent blue phase liquid crystal Fresnel lens based on phase-separated composite films[J]. Liquid Crystals, 2017, 44(7):1078-1085. DOI: 10.1080/02678292.2016.1262070.
[40] [40] LIN H Y, AVCI N, HWANG S J. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal-polymer composite[J]. Liquid Crystals, 2019, 46(9):1359-1366. DOI: 10.1080/02678292.2018.1562114.
[41] [41] RONG N, LI Y, LI X, et al. Polymer-stabilized blue-phase liquid crystal fresnel lens cured with patterned light using a spatial light modulator[J]. Journal of Display Technology, 2016, 12(10):1008-1012. DOI: 10.1002/sdtp.11047.
[42] [42] HOGAN B T, KOVALSKA E, CRACIUN M F, et al. 2D material liquid crystals for optoelectronics and photonics[J]. Journal of Materials Chemistry C, 2017, 5(43):11185-11195. DOI: 10.1039/C7TC02549A.
[43] [43] BRENT S. Mapping the world in 3D[J]. Nat Photonics, 2010, 4(7):429-430. DOI: 10.1038/nphoton.2010.148.
[44] [44] JUNG I W, RATTANAVARIN S, SARAPUKDEE P, et al. 2-D MEMS scanner for handheld multispectral confocal microscopes[C]. // 2012 International Conference on Optical MEMS and Nanophotonics. IEEE, 2012:238-239. DOI: 10.1109/OMEMS.2012.6318891.
[45] [45] HOLSTEEN A L, RAZA S, FAN P, et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas[J]. Science, 2017, 358(6369):1407-1410. DOI: 10.1126/science.aao5371.
[46] [46] GAO L, ZHANG Y, ZHANG H, et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures[J]. Acs Nano, 2015, 9(6):5968-5975. DOI: 10.1021/acsnano.5b00716.
[47] [47] ZHELUDEV N I, PLUM E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 2016, 11(1):16-22. DOI: 10.1038/nnano.2015.302.
[48] [48] CENCILLO-ABAD P, OU J Y, PLUM E, et al. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface[J]. Scientific Reports, 2017, 7(1):1-7. DOI: 10.1038/s41598-017-05906-9.
[49] [49] AFRIDI A, CANET-FERRER J, PHILIPPET L, et al. Electrically driven varifocal silicon metalens[J]. ACS Photonics, 2018, 5(11):4497-4503. DOI: 10.1021/acsphotonics.8b00948.
[50] [50] ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):1-9. DOI: 10.1038/s41467-018-03155-6.
[51] [51] WU P C, PALA R A, SHIRMANESH G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 2019, 10(1):1-9. DOI: 10.1038/s41467-019-11598-8.
[52] [52] EMBORAS A, NIEGEMANN J, MA P, et al. Atomic scale plasmonic switch[J]. Nano Letters, 2016, 16(1):709-714. DOI: 10.1021/acs.nanolett.5b04537.
[53] [53] DI MARTINO G, TAPPERTZHOFEN S, HOFMANN S, et al. Nanoscale Plasmon‐Enhanced Spectroscopy in Memristive Switches[J]. Small, 2016, 12(10):1334-1341. DOI: 10.1002/smll.201503165.
[54] [54] SCHOEN D T, HOLSTEEN A L, BRONGERSMA M L. Probing the electrical switching of a memristive optical antenna by STEM EELS[J]. Nature Communications, 2016, 7(1):1-7. DOI: 10.1038/ncomms12162.
[55] [55] LI Y, VAN DE GROEP J, TALIN A A, et al. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device[J]. Nano Letters, 2019, 19(11):7988-7995. DOI: 10.1021/acs.nanolett.9b03143.
[56] [56] DUAN X, KAMIN S, LIU N. Dynamic plasmonic colour display[J]. Nature Communications, 2017, 8(1):1-9. DOI: 10.1038/ncomms14606.
[57] [57] MINOVICH A, FARNELL J, NESHEV D N, et al. Liquid crystal based nonlinear fishnet metamaterials[J]. Applied Physics Letters, 2012, 100(12):121113. DOI: 10.1063/1.3695165.
[58] [58] BUCHNEV O, OU J, KACZMAREK M, et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Optics Express, 2013, 21(2):1633-1638. DOI: 10.1364/OE.21.001633.
[59] [59] LI S-Q, XU X, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445):1087-1090. DOI: 10.1126/science.aaw6747.
[60] [60] WUTTIG M, BHASKARAN H, TAUBNER T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 2017, 11(8):465-476. DOI: 10.1038/nphoton.2017.126.
[61] [61] DING F, YANG Y, BOZHEVOLNYI S I. Dynamic metasurfaces using phase‐change chalcogenides[J]. Advanced Optical Materials, 2019, 7(14):1801709. DOI: 0.1002/adom.201801709.
[62] [62] GHOLIPOUR B, ZHANG J, MACDONALD K F, et al. An all‐optical, non‐volatile, bidirectional, phase‐change meta‐switch[J]. Advanced Materials, 2013, 25(22):3050-3054. DOI: 10.1002/adma.201300588.
[63] [63] WANG Q, ROGERS E T, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1):60-65. DOI: 10.1038/nphoton.2015.247.
[64] [64] PARK J, KIM S J, LANDREMAN P, et al. An Over-Coupled Phase-Change Metasurface for Efficient Reflection Phase Modulation[J]. Advanced Optical Materials, 2020, 8(20):2000745. DOI: 10.1002/adom.202000745.
[65] [65] HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9):5319-5325. DOI: 10.1021/acs.nanolett.6b00555.
[66] [66] YAO Y, KATS M A, GENEVET P, et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 2013, 13(3):1257-1264. DOI: 10.1021/nl3047943.
[67] [67] EMANI N K, CHUNG T-F, NI X, et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 2012, 12(10):5202-5206. DOI: 10.1021/nl302322t.
[68] [68] PARK J, KANG J-H, KIM S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2017, 17(1):407-413. DOI: 10.1021/acs.nanolett.6b04378.
[69] [69] IYER P P, PENDHARKAR M, PALMSTRM C J, et al. III-V heterojunction platform for electrically reconfigurable dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6):1345-1350. DOI: 10.1021/acsphotonics.9b00178.
[70] [70] JUN Y C, RENO J, RIBAUDO T, et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures[J]. Nano Letters, 2013, 13(11):5391-5396. DOI: 10.1021/nl402939t.
[71] [71] SHERROTT M C, HON P W, FOUNTAINE K T, et al. Experimental demonstration of> 230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5):3027-3034. DOI: 10.1021/acs.nanolett.7b00359.
[72] [72] ZHENG X, LIN H, YANG T, et al. Laser trimming of graphene oxide for functional photonic applications[J]. Journal of Physics D: Applied Physics, 2017, 50(7):074003. DOI: 10.1088/1361-6463/aa54e9.
[73] [73] YANG Y, LIN H, ZHANG B Y, et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices[J]. Acs Photonics, 2019, 6(4):1033-1040. DOI: 10.1021/acsphotonics.9b00060.
[74] [74] CAO G, LIN H, FRASER S, et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments[J]. ACS Applied Materials & Interfaces, 2019, 11(22):20298-20303. DOI: 10.1021/acsami.9b05109.
[75] [75] ZHENG X, JIA B, LIN H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6(1):1-7. DOI: 10.1038/ncomms9433.
[76] [76] WANG S, OUYANG X, FENG Z, et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 2018, 1(2):170002. DOI: 10.29026/oea.2018.170002.
[77] [77] ZHENG X, JIA B, CHEN X, et al. In situ third‐order non‐linear responses during laser reduction of graphene oxide thin films towards on‐chip non‐linear photonic devices[J]. Advanced Materials, 2014, 26(17):2699-2703. DOI: 10.1002/adma.201304681.
[78] [78] LI X, ZHANG Q, CHEN X, et al. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording[J]. Scientific Reports, 2013, 3(1):1-4. DOI: 10.1038/srep02819.
[79] [79] SMIRNOV V A, ARBUZOV A, SHUL’GA Y M, et al. Photoreduction of graphite oxide[J]. High Energy Chemistry, 2011, 45(1):57-61. DOI: 10.1134/S0018143911010176.
[80] [80] LI X, REN H, CHEN X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6(1):1-7. DOI: 10.1038/ncomms7984.
[81] [81] TAO Y, VARGHESE B, JAISWAL M, et al. Localized insulator-conductor transformation of graphene oxide thin films via focused laser beam irradiation[J]. Applied Physics A, 2012, 106(3):523-31. DOI: 0.1007/s00339-011-6710-8.
[82] [82] HECHT E, ZAJAC A. Optics[M]. 4th ed. San Francisco, California: Addison-Wesley, 2002:384-441.
[83] [83] CAO G, GAN X, LIN H, et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electronic Advances, 2018, 1(7):180012. DOI: 10.29026/oea.2018.180012.
[84] [84] STRONG V, DUBIN S, EL-KADY M F, et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices[J]. ACS Nano, 2012, 6(2):1395-1403. DOI: 10.1021/nn204200w.
[85] [85] ZHANG Y L, GUO L, XIA H, et al. Photoreduction of graphene oxides: methods, properties, and applications[J]. Advanced Optical Materials, 2014, 2(1):10-28. DOI: 10.1002/adom.201300317.
[86] [86] TRUSOVAS R, RAIUKAITIS G, NIAURA G, et al. Recent advances in laser utilization in the chemical modification of graphene oxide and its applications[J]. Advanced Optical Materials, 2016, 4(1):37-65. DOI: 10.1002/adom.201500469.
[87] [87] AN J, LE T S D, LIM C H J, et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 2018, 5(8):1800496. DOI: 10.1002/advs.201800496.
[88] [88] AN J, LE T S D, HUANG Y, et al. All-graphene-based highly flexible noncontact electronic skin[J]. ACS Applied Materials & Interfaces, 2017, 9(51):44593-44601. DOI: 10.1021/acsami.7b13701.
[89] [89] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4):1271-1275. DOI: 10.1021/nl903868w.
[90] [90] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699-712. DOI: 10.1038/nnano.2012.193.
[91] [91] WU S, BUCKLEY S, SCHAIBLEY J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 2015, 520(7545):69-72. DOI: 10.1038/nature14290.
[92] [92] XUE Y, ZHANG Y, LIU Y, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. Acs Nano, 2016, 10(1):573-580. DOI: 10.1021/acsnano.5b05596.
[93] [93] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS 2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150. DOI: 10.1038/nnano.2010.279.
[94] [94] YANG J, WANG Z, WANG F, et al. Atomically thin optical lenses and gratings[J]. Light: Science & Applications, 2016, 5(3):e16046. DOI: 10.1038/lsa.2016.46.
[95] [95] PEI J, YANG J, LU Y. Elastic and Inelastic Light-Matter Interactions in 2D Materials[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(1):206-213. DOI: 10.1109/JSTQE.2016.2574599.
[96] [96] LIN H, XU Z Q, QIU C, et al. High performance atomically thin flat lenses[Preprint]. arXiv:1611.06457 [physics.optics], 2016. DOI: 10.48550/arXiv.1611.06457.
[97] [97] ZHOU J, LIN J, HUANG X, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701):355-359. DOI: 10.1038/s41586-018-0008-3.
[98] [98] LIU H L, SHEN C C, SU S H, et al. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry[J]. Applied Physics Letters, 2014, 105(20):201905. DOI: 10.1063/1.4901836.
[99] [99] LIN H, XU Z Q, CAO G, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science & Applications, 2020, 9(1):1-11. DOI: 10.1038/s41377-020-00374-9.
[100] [100] LIN H, STURMBERG B C, LIN K-T, et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light [J]. Nature Photonics, 2019, 13(4):270-276. DOI: 10.1038/s41566-019-0389-3.
[101] [101] PARADISANOS I, KYMAKIS E, FOTAKIS C, et al. Intense femtosecond photoexcitation of bulk and monolayer MoS2[J]. Applied Physics Letters, 2014, 105(4):041108. DOI: doi.org/10.1063/1.4891679.
[102] [102] SUNDARAM S, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4):217-24. DOI: 10.1038/nmat767.
[103] [103] SYGLETOU M, PETRIDIS C, KYMAKIS E, et al. Advanced photonic processes for photovoltaic and energy storage systems[J]. Advanced Materials, 2017, 29(39):1700335. DOI: 10.1002/adma.201700335.
[104] [104] XU Z-Q, ZHANG Y, LIN S, et al. Synthesis and transfer of large-area monolayer WS2 crystals: moving toward the recyclable use of sapphire substrates[J]. ACS Nano, 2015, 9(6):6178-6187. DOI: 10.1021/acsnano.5b01480.
[105] [105] AKINWANDE D, BRENNAN C J, BUNCH J S, et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond[J]. Extreme Mechanics Letters, 2017, 13:42-77. DOI: 10.1016/j.eml.2017.01.008.
[106] [106] PU J, FUNAHASHI K, CHEN C H, et al. Highly flexible and high‐performance complementary inverters of large‐area transition metal dichalcogenide monolayers[J]. Advanced Materials, 2016, 28(21):4111-4119. DOI: 10.1002/adma.201503872.
[107] [107] DI FALCO A, PLOSCHNER M, KRAUSS T F. Flexible metamaterials at visible wavelengths[J]. New Journal of Physics, 2010, 12(11):113006. DOI: 10.1088/1367-2630/12/11/113006.
[108] [108] XU X, PENG B, LI D, et al. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing[J]. Nano Letters, 2011, 11(8):3232-3238. DOI: 10.1021/nl2014982.
[109] [109] CONG X, ZHANG L, LI J, et al. Integration of ultrathin metasurfaces with a lens for efficient polarization division multiplexing[J]. Advanced Optical Materials, 2019, 7(12):1900116. DOI: 10.1002/adom.201900116.
[110] [110] ZHANG Y, LIANG L, YANG J, et al. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution[J]. Scientific Reports, 2016, 6(1):1-8. DOI: 10.1038/srep26875.
[111] [111] ZHAO J, SIMA B, JIA N, et al. Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements[J]. Optics Express, 2016, 24(24):27849-27857. DOI: 10.1364/OE.24.027849.
[112] [112] CAI J, ZHANG C, LI W D. Dual‐Color Flexible Metasurfaces with Polarization‐Tunable Plasmons in Gold Nanorod Arrays[J]. Advanced Optical Materials, 2021, 9(4):2001401. DOI: 10.1002/adom.202001401.
[113] [113] RYU B, YANG E, PARK Y, et al. Fabrication of prebent MoS2 biosensors on flexible substrates[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2017, 35(6):06G805. DOI: 10.1116/1.4991749.
[114] [114] NG B, HANHAM S, GIANNINI V, et al. Lattice resonances in antenna arrays for liquid sensing in the terahertz regime[J]. Optics Express, 2011, 19(15):14653-14661. DOI: 10.1116/1.4991749.
[115] [115] CHEN Z, HAN N, PAN Z, et al. Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates[J]. Optical Materials Express, 2011, 1(2):151-157. DOI: 10.1364/OME.1.000151.
[116] [116] HAN N, CHEN Z, LIM C, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Optics Express, 2011, 19(8):6990-6998. DOI: 10.1364/OE.19.006990.
[117] [117] LIU K, ZENG X, JIANG S, et al. A large-scale lithography-free metasurface with spectrally tunable super absorption[J]. Nanoscale, 2014, 6(11):5599-5605. DOI: 10.1039/c4nr00747f.
[118] [118] LI Y, TAN L W, HAO X T, et al. Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates[J]. Applied Physics Letters, 2005, 86(15):153508. DOI: 10.1063/1.1900940.
[119] [119] MIYAMARU F, TAKEDA M W, TAIMA K. Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region[J]. Applied Physics Express, 2009, 2(4):042001. DOI: 10.1143/APEX.2.042001.
[120] [120] TUMKUR T, ZHU G, BLACK P, et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial[J]. Applied Physics Letters, 2011, 99(15):151115. DOI: 10.1063/1.3631723.
[121] [121] KANAHASHI K, ISHIHARA M, HASEGAWA M, et al. Giant power factors in p-and n-type large-area graphene films on a flexible plastic substrate[J]. Npj 2D Materials and Applications, 2019, 3(1):1-6. DOI: 10.1038/s41699-019-0128-0.
[122] [122] TSAI M-Y, TARASOV A, HESABI Z R, et al. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors[J]. ACS applied Materials & Interfaces, 2015, 7(23):12850-12855. DOI: 10.1021/acsami.5b02336.
[123] [123] KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7(1):1-7. DOI: 10.1038/ncomms11618.
[124] [124] MOGHIMI M J, FERNANDES J, KANHERE A, et al. Micro-Fresnel-zone-plate array on flexible substrate for large field-of-view and focus scanning[J]. Scientific Reports, 2015, 5(1):1-11. DOI: 10.1038/srep15861.
[125] [125] WALIA S, SHAH C M, GUTRUF P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales[J]. Applied Physics Reviews, 2015, 2(1):011303. DOI: 10.1063/1.4913751.
[126] [126] PU J, LI L J, TAKENOBU T. Flexible and stretchable thin-film transistors based on molybdenum disulphide[J]. Physical Chemistry Chemical Physics, 2014, 16(29):14996-15006. DOI: 10.1039/c3cp55270e.
[127] [127] CHO J H, LEE J, XIA Y, et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic[J]. Nature Materials, 2008, 7(11):900-906. DOI: 10.1038/nmat2291.
[128] [128] PU J, YOMOGIDA Y, LIU K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Letters, 2012, 12(8):4013-4017. DOI: 10.1021/nl301335q.
[129] [129] PU J, ZHANG Y, WADA Y, et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics[J]. Applied Physics Letters, 2013, 103(2):023505. DOI: 10.1063/1.4813311.
[130] [130] MEIJER E, DE LEEUW D, SETAYESH S, et al. Solution-processed ambipolar organic field-effect transistors and inverters[J]. Nature Materials, 2003, 2(10):678-682. DOI: 10.1038/nmat978.
[131] [131] NABER R C, TANASE C, BLOM P W, et al. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nature Materials, 2005, 4(3):243-248. DOI: 10.1038/nmat1329.
[132] [132] SUN B, SIRRINGHAUS H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods[J]. Nano Letters, 2005, 5(12):2408-2413. DOI: 10.1021/nl051586w.
[133] [133] HUANG F, BO Z S, GENG Y H, et al. Study on optoelectronic polymers: an overview and outlook[J]. Acta Polymerica Sinica, 2019, 50(10):988-1046. DOI: 10.11777/j.issn1000-3304.2019.19110.
[134] [134] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4):2818-2823. DOI: 10.1021/acs.nanolett.6b00618.
[135] [135] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294. DOI: 10.1126/science.1202691.
[136] [136] ABDOLLAHRAMEZANI S, ARIK K, FARAJOLLAHI S, et al. Beam manipulating by gate-tunable graphene-based metasurfaces[J]. Optics Letters, 2015, 40(22):5383-5386. DOI: 10.1364/OL.40.005383.
[137] [137] JABLAN M, BULJAN H, SOLJACIC M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24):245435. DOI: 10.1103/PhysRevB.80.245435.
[138] [138] KOPPENS F H, CHANG D E, GARCíA DE ABAJO F J. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8):3370-3377. DOI: 10.1021/nl201771h.
[139] [139] THONGRATTANASIRI S, KOPPENS F H, DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 2012, 108(4):047401. DOI: 10.1103/PhysRevLett.108.047401.
[140] [140] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200. DOI: 10.1038/nature04233.
[141] [141] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. DOI: 10.1126/science.1102896.
[142] [142] WANG F, ZHANG Y, TIAN C, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873):206-209. DOI:10.1126/science.1152793.
[143] [143] VAKIL A, ENGHETA N. Fourier optics on graphene[J]. Physical Review B, 2012, 85(7):075434. DOI: 10.1103/PhysRevB.85.075434.
[144] [144] LU W B, ZHU W, XU H J, et al. Flexible transformation plasmonics using graphene[J]. Optics Express, 2013, 21(9):10475-10482. DOI: 10.1364/OE.21.010475.
[145] [145] DENG S, BUTT H, JIANG K, et al. Graphene nanoribbon based plasmonic Fresnel zone plate lenses[J]. RSC advances, 2017, 7(27):16594-16601. DOI: 10.1039/C6RA27942B.
[146] [146] PARK S, PARK C, HWANG Y J, et al. Focus-Tunable Planar Lenses by Controlled Carriers over Exciton[J]. Advanced Optical Materials, 2021, 9(2):2001526. DOI: 10.1002/adom.202001526.
[147] [147] LIU M, YIN X, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349):64-67. DOI: 10.1038/nature10067.
[148] [148] GUSYNIN V, SHARAPOV S, CARBOTTE J. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2006, 19(2):026222. DOI: 10.1088/0953-8984/19/2/026222.
[149] [149] PARK S, LEE G, PARK B, et al. Electrically focus-tuneable ultrathin lens for high-resolution square subpixels[J]. Light: Science & Applications, 2020, 9(1):1-13. DOI: 10.1038/s41377-020-0329-5.
[150] [150] HUANG L, CHEN X, MüHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4(1):1-8. DOI: 10.1038/ncomms3808.
[151] [151] ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials, 2018, 3(12):460-472. DOI: 10.1038/s41578-018-0061-4.
[152] [152] NESHEV D, AHARONOVICH I. Optical metasurfaces: new generation building blocks for multi-functional optics[J]. Light: Science & Applications, 2018, 7(1):1-5. DOI: 10.1038/s41377-018-0058-1.
[153] [153] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1):1-7. DOI: 10.1038/ncomms14992.
[154] [154] MILLER D A. Attojoule optoelectronics for low-energy information processing and communications[J]. Journal of Lightwave Technology, 2017, 35(3):346-396. DOI: 10.1109/JLT.2017.2647779.
[155] [155] PEI J, YANG J, XU R, et al. Exciton and trion dynamics in bilayer MoS2[J]. Small, 2015, 11(48):6384-6390. DOI: 10.1002/smll.201501949.
[156] [156] YANG J, LU T, MYINT Y W, et al. Robust excitons and trions in monolayer MoTe2[J]. ACS Nano, 2015, 9(6):6603-6609. DOI: 10.1021/acsnano.5b02665.
[157] [157] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4):216-226. DOI: 10.1038/NPHOTON.2015.282.
[158] [158] LI Y, CHERNIKOV A, ZHANG X, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review B, 2014, 90(20):205422.DOI: 10.1103/PhysRevB.90.205422.
[159] [159] MAK K F, SHAN J. Mirrors made of a single atomic layer[Z]. Nature Publishing Group, 2018. DOI: 10.1038/d41586-018-04089-1.
[160] [160] BACK P, ZEYTINOGLU S, IJAZ A, et al. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2[J]. Physical Review Letters, 2018, 120(3):037401. DOI: 10.1103/PhysRevLett.120.037401.
[161] [161] SCURI G, ZHOU Y, HIGH A A, et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride[J]. Physical Review Letters, 2018, 120(3):037402. DOI: 10.1103/PhysRevLett.120.037402.
[162] [162] GEORGIOU T, JALIL R, BELLE B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8(2):100-103. DOI: 10.1038/nnano.2012.224.
[163] [163] LI Q-T, DONG F, WANG B, et al. Free-space optical beam tapping with an all-silica metasurface[J]. Acs Photonics, 2017, 4(10):2544-2549. DOI: 10.1021/acsphotonics.7b00812.
[164] [164] KRASNOK A. Metalenses go atomically thick and tunable[J]. Nature Photonics, 2020, 14(7):409-410. DOI: 10.1038/s41566-020-0648-3.
[165] [165] SIO L D, TEDESCO A, SERAK S, et al. Light sensitive liquid crystals for all-optical photonic devices[J]. Molecular Crystals and Liquid Crystals, 2012, 560(1):143-148. DOI: 10.1080/15421406.2012.663194.
[166] [166] PALERMO G, DE SIO L, CAPUTO R, et al. Liquid Crystals Order in Polymeric Microchannels[M]. Liquid Crystalline Polymers, Springer. 2015:1-14. DOI: 10.1007/978-3-319-20270-9_1.
[167] [167] ZHANG H, ABHIRAMAN B, ZHANG Q, et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings[J]. Nature communications, 2020, 11(1):1-9. DOI: 10.1038/s41467-020-17313-2.
[168] [168] KIM J Y, KIM S O. Electric fields line up graphene oxide[J]. Nature Materials, 2014, 13(4):325-326. DOI: 10.1038/nmat3929.
[169] [169] SASIKALA S P, LIM J, KIM I H, et al. Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials[J]. Chemical Society Reviews, 2018, 47(16):6013-6045. DOI: 10.1039/C8CS00299A.
[170] [170] ABOUTALEBI S H, GUDARZI M M, ZHENG Q B, et al. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions [J]. Advanced Functional Materials, 2011, 21(15):2978-2988. DOI: 10.1002/adfm.201100448.
[171] [171] TONG L, QI W, WANG M, et al. Long-range ordered graphite oxide liquid crystals[J]. Chemical Communications, 2014, 50(58):7776-7779. DOI: 10.1039/C4CC01347F.
[172] [172] ZAMORA-LEDEZMA C, PUECH N, ZAKRI C, et al. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide[J]. The Journal of Physical Chemistry Letters, 2012, 3(17):2425-2430. DOI: 10.1021/jz3008479.
[173] [173] JALILI R, AMINORROAYA-YAMINI S, BENEDETTI T M, et al. Processable 2D materials beyond graphene: MoS2 liquid crystals and fibres[J]. Nanoscale, 2016, 8(38):16862-16867. DOI: 10.1039/C6NR03681C.
[174] [174] XIA Y, MATHIS T S, ZHAO M-Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705):409-412. DOI: 10.1038/s41586-018-0109-z.
[175] [175] CHIU C W, LIN Y C, CHAO P C P, et al. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes[J]. Optics Express, 2008, 16(23):19277-19284. DOI: 10.1364/OE.16.019277.
[176] [176] WANG B, YE M, YAMAGUCHI M, et al. Thin liquid crystal lens with low driving voltages[J]. Japanese Journal of Applied Physics, 2009, 48(9R):098004. DOI: 10.1143/jjap.48.098004.
[177] [177] VALLEY P, MATHINE D L, DODGE M R, et al. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters, 2010, 35(3):336-338. DOI: 10.1364/OL.35.000336.
[178] [178] LIN H C, LIN Y H. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes[J]. Optics Express, 2012, 20(3):2045-2052. DOI: 10.1364/OE.20.002045.
[179] [179] CHEN H S, WANG Y J, CHEN P J, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens[J]. Optics Express, 2015, 23(22):28154-28162. DOI: 10.1364/OE.23.028154.
[180] [180] HASSANFIROOZI A, HUANG Y P, JAVIDI B, et al. Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system[J]. Optics Express, 2016, 24(8):8527-8538. DOI: 10.1364/OE.24.008527.
[181] [181] DOU H, CHU F, SONG Y-L, et al. A multifunctional blue phase liquid crystal lens based on multi-electrode structure[J]. Liquid Crystals, 2018, 45(4):491--497. DOI: 10.1080/02678292.2017.1355988.
[182] [182] WANG X-Q, YANG W-Q, LIU Z, et al. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal[J]. Optical Materials Express, 2017, 7(1):8-15. DOI: 10.1364/OME.7.000008.
[183] [183] CHU F, TIAN L L, LI R, et al. Adaptive nematic liquid crystal lens array with resistive layer[J]. Liquid Crystals, 2020, 47(4):563-571. DOI: 10.1080/02678292.2019.1662502.
[184] [184] KUMAR M B, KANG D, JUNG J, et al. Compact vari-focal augmented reality display based on ultrathin, polarization-insensitive, and adaptive liquid crystal lens[J]. Optics and Lasers in Engineering, 2020, 128:106006. DOI: 10.1016/j.optlaseng.2020.106006.
[185] [185] GALSTIAN T, ASATRYAN K, PRESNIAKOV V, et al. Controllable liquid crystal layered Fresnel lens device: U.S. Patent 11,156,895[Z]. Google Patents. 2021. https://patents.google.com/patent/US11156895B2/en.
[187] [187] PARK S, AN J, JUNG I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4):1593-1597. DOI: 10.1021/nl803798y.
[188] [188] YUN T, JEONG G H, PADMAJAN SASIKALA S, et al. 2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial[J]. APL Materials, 2020, 8(7):070903. DOI: 10.1063/5.0012465.
[189] [189] SHEN T-Z, HONG S-H, SONG J-K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient[J]. Nature Materials, 2014, 13(4):394-399. DOI: 10.1038/nmat3888.
[190] [190] KIM M J, PARK J H, YAMAMOTO J, et al. Electro‐optic switching with liquid crystal graphene[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(5):397-403. DOI: 10.1002/pssr.201600038.
[191] [191] YAO B, CHEN J, HUANG L, et al. Base‐induced liquid crystals of graphene oxide for preparing elastic graphene foams with long‐range ordered microstructures[J]. Advanced Materials, 2016, 28(8):1623-1629. DOI: 10.1002/adma.201504594.
[192] [192] LEE K E, SASIKALA S P, LEE H J, et al. Amorphous molybdenum sulfide deposited graphene liquid crystalline fiber for hydrogen evolution reaction catalysis[J]. Particle & Particle Systems Characterization, 2017, 34(9):1600375.
Get Citation
Copy Citation Text
DONG Bao-juan, LIAN Huan, ZHANG Tong-yao. Subwavelength Optical Lenses Based on 2D Materials[J]. Journal of Quantum Optics, 2022, 28(3): 262
Category:
Received: Feb. 21, 2022
Accepted: --
Published Online: Oct. 14, 2022
The Author Email: DONG Bao-juan (dongbaojuan@sxu.edu.cn)