Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2228001(2024)

Ship Target Detection Method in SAR Images Based on Improved YOLOv8s

Mingqiu Yang, Xiaoqing Zuo, and Yan Dong*
Author Affiliations
  • Faculty of Land and Resources Engineering, Kunming University of Scienceand Technology, Kunming 650093, Yunnan , China
  • show less
    Figures & Tables(22)
    Structure diagram of ACC residual feature enhancement module
    Schematic diagram of obtaining spatial features of receptive domain
    Schematic diagram of DSConv quantization process structure
    Changes on the x- and y- axis
    Structure diagram of BiFormer and BiFormer block models
    BRA module structure diagram
    Improved YOLOv8s network structure
    Comparison of detection results after adding convolutional modules. (a) YOLOv8s; (b) YOLOv8s+ODConv; (c) YOLOv8s+DCN; (d) YOLOv8s+SPD-Conv; (e) YOLOv8s+DSConv; (f) original image of SSDD dataset
    Comparison of detection results after adding different attention mechanisms. (a) YOLOv8s; (b) YOLOv8s+SimAM-attention; (c) YOLOv8s+CBAM-attention; (d) YOLOv8s+Self-attention; (e) YOLOv8s+CSWin-attention; (f) YOLOv8s+GLA-attention; (g) YOLOv8s+SU-attention; (h) YOLOv8s+BiFormer-attention; (i) original image of SSDD dataset
    Precision variation curve
    Images in SSDD dataset. (a) Single small target; (b) multiple small targets; (c) normal size target; (d) targets in a complex context
    Detection performance of YOLOv8s on SSDD dataset. (a) Single small target; (b) multiple small targets; (c) normal size target; (d) targets in a complex context
    Detection performance of proposed algorithm on SSDD dataset. (a) Single small target; (b) multiple small targets; (c) normal size target; (d) targets in a complex context
    Images in HRSID dataset. (a) Single small target; (b) multiple small targets; (c) multiple small targets in a complex context
    Detection performance of YOLOv8s on the HRSID dataset. (a) Single small target; (b) multiple small targets; (c) multiple small targets in a complex context
    Detection performance of our algorithm on the HRSID dataset. (a) Single small target; (b) multiple small targets; (c) multiple small targets in a complex context
    • Table 1. Performance Comparison of Convolutional Modules

      View table

      Table 1. Performance Comparison of Convolutional Modules

      MethodP /%R /%PmAP /%Parameter /106
      YOLOv8s93.194.695.611.13
      YOLOv8s+SPDConv93.394.795.811.51
      YOLOv8s+DCN94.195.096.211.19
      YOLOv8s+ODConv94.995.296.511.32
      YOLOv8s+DSConv95.895.596.911.18
    • Table 2. Performance comparison of attention modules

      View table

      Table 2. Performance comparison of attention modules

      MethodP /%R /%PmAP /%Parameter /106
      YOLOv8s93.194.695.611.13
      YOLOv8s+SimAM-attention93.394.795.911.18
      YOLOv8s+CBAM-attention93.594.895.711.25
      YOLOv8s+Self-attention94.295.496.311.21
      YOLOv8s+CSWin-attention94.395.696.111.19
      YOLOv8s+GLA-attention94.795.896.512.03
      YOLOv8s+SU-attention94.295.496.012.73
      YOLOv8s+BiFormer-attention95.795.996.711.15
    • Table 3. Results of ablation experiment

      View table

      Table 3. Results of ablation experiment

      MethodTypeP /%R /%PmAP /%
      AYOLOv8s93.194.695.6
      BYOLOv8s+BiFormer95.795.996.7
      CYOLOv8s+ACC95.996.397.8
      DYOLOv8s+DSConv95.895.596.9
      EYOLOv8s+BiFormer+ACC96.197.197.9
      FYOLOv8s+DSConv+ACC96.697.597.4
      GYOLOv8s+BiFormer+DSConv96.296.697.8
      HYOLOv8s+BiFormer+DSConv+ACC98.198.298.9
    • Table 4. Comparative experimental results on the SSDD dataset

      View table

      Table 4. Comparative experimental results on the SSDD dataset

      MethodP /%R /%PmAP /%
      YOLOv5n95.395.695.3
      Reference [1489.290.692.7
      YOLOv5s95.195.294.9
      YOLOv696.994.495.2
      YOLOv793.491.196.1
      YOLOv8s93.194.695.6
      Reference [1592.591.292.8
      Reference [1696.095.795.9
      YOLOv8n96.595.097.6
      Reference [2894.295.395.8
      YOLOv8l96.297.797.7
      YOLOv8m97.597.496.7
      Faster R-CNN86.387.686.2
      SSD89.188.687.5
      Proposed98.198.298.9
    • Table 5. Comparative experimental results on HRSID dataset

      View table

      Table 5. Comparative experimental results on HRSID dataset

      MethodP /%R /%PmAP /%
      YOLOv5n91.286.493.7
      Reference [1488.887.992.2
      YOLOv5s91.588.193.5
      YOLOv694.685.292.5
      YOLOv792.186.793.9
      YOLOv8s93.687.193.2
      Reference [1588.386.987.6
      Reference [1695.287.994.5
      YOLOv8n96.184.693.0
      Reference [2894.386.993.6
      YOLOv8l96.489.395.1
      YOLOv8m96.688.795.6
      Faster R-CNN80.181.677.6
      SSD82.580.180.3
      Proposed97.791.196.5
    • Table 6. Comprehensive performance comparison of models

      View table

      Table 6. Comprehensive performance comparison of models

      MethodParameter /106FLOPs /109FPS /(frame·s-1mAP /%
      YOLOv5n17.6562.96293.7
      Reference [1430.5365.81992.7
      YOLOv64.2311.85092.5
      YOLOv8s11.1328.68393.2
      Reference [1537.2146.53692.8
      Reference [1630.5161.82191.3
      YOLOv8l43.63165.47595.1
      Reference [2823.4035.26991.5
      Faster R-CNN28.3560.32277.6
      Proposed13.6033.28096.5
    Tools

    Get Citation

    Copy Citation Text

    Mingqiu Yang, Xiaoqing Zuo, Yan Dong. Ship Target Detection Method in SAR Images Based on Improved YOLOv8s[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 5, 2024

    Accepted: Apr. 10, 2024

    Published Online: Nov. 20, 2024

    The Author Email: Yan Dong (kmdy@kust.edu.cn)

    DOI:10.3788/LOP240813

    CSTR:32186.14.LOP240813

    Topics