Chinese Journal of Lasers, Volume. 47, Issue 7, 701010(2020)
Surface Plasmon Semiconductor Nanolaser
[1] Maiman T. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[2] Chang S W, Lin T R, Chuang S L. Theory of plasmonic Fabry-Perot nanolasers[J]. Optics Express, 18, 15039-15053(2010).
[3] Altug H, Englund D, Vuckovic J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2, 484-488(2006).
[4] Athanasiou M, Smith R M, Liu B et al. Room temperature continuous-wave green lasing from an InGaN microdisk on silicon[J]. Scientific Reports, 4, 7250(2015).
[5] Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser[J]. Physical Review Letters, 96, 143903(2006).
[6] Kim M W, Ku P. Lasing in a metal-clad microring resonator[J]. Applied Physics Letters, 98, 131107(2011).
[7] Xu H W, Wright J B, Hurtado A et al. Gold substrate-induced single-mode lasing of GaN nanowires[J]. Applied Physics Letters, 101, 221114(2012).
[8] Xu H W, Wright J B, Luk T S et al. Single-mode lasing of GaN nanowire-pairs[J]. Applied Physics Letters, 101, 113106(2012).
[9] Sun Y, Zhou K, Sun Q et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si[J]. Nature Photonics, 10, 595-599(2016).
[10] Feng M X, He J L, Sun Q et al. Room-temperature electrically pumped InGaN-based microdisk laser grown on Si[J]. Optics Express, 26, 5043-5051(2018).
[11] Das A, Heo J, Jankowski M et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 107, 066405(2011).
[12] Alix-Panabières C, Pantel K. Here comes the spaser[J]. Nature Materials, 16, 790-791(2017).
[13] Christopoulos S, Grundy A J D et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 98, 126405(2007).
[14] Zheludev N I, Prosvirnin S L, Papasimakis N et al. Lasing spaser[J]. Nature Photonics, 2, 351-354(2008).
[15] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of aspaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).
[16] Flynn R A, Kim C S, Vurgaftman I et al. Aroom-temperature semiconductor spaser operating near 15 μm[J]. Optics Express, 19, 8954-8961(2011).
[17] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).
[18] Nezhad M P, Simic A, Bondarenko O et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 4, 395-399(2010).
[19] Stockman M I. Nanoplasmonics: past, present, and glimpse into future[J]. Optics Express, 19, 22029-22106(2011).
[20] Brongersma M L, Shalaev V M. The case for plasmonics[J]. Science, 328, 440-441(2010).
[22] Ramezani M, Halpin A. Fernandez-Dominguez A I, et al. Plasmon-exciton-polariton lasing[J]. Optica, 4, 31-37(2017).
[23] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).
[25] Wood R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 4, 396-402(1902).
[26] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003).
[27] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).
[28] Azzam S I, Kildishev A V, Ma R-M et al. Ten years of spasers and plasmonic nanolasers[J]. Light-Science & Applications, 9, 90(2020).
[29] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).
[30] Yang A K, Hoang T B, Dridi M et al. Real-time tunable lasing from plasmonic nanocavity arrays[J]. Nature Communications, 6, 6939(2015).
[31] Wang D Q, Yang A K, Wang W J et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices[J]. Nature Nanotechnology, 12, 889-894(2017).
[32] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009).
[33] Tao T, Zhi T, Liu B et al. Lasers: manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods[J]. Advanced Functional Materials, 27, 1703198(2017).
[34] van Beijnum F, van Veldhoven P J, Geluk E J et al. Surface plasmon lasing observed in metal hole arrays[J]. Physical Review Letters, 110, 206802(2013).
[35] Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 29, 287-324(2009).
[36] Auguie B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 101, 143902(2008).
[37] Anker J N, Paige Hall W, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).
[38] Vecchi G, Giannini V, Gomez Rivas J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas[J]. Physical Review B, 80, 201401(2009).
[40] Guo L H, Jackman J A, Yang H H et al. Strategies for enhancing the sensitivity of plasmonic nanosensors[J]. Nano Today, 10, 213-239(2015).
[41] Rekola H T, Hakala T K, Törmä P. One-dimensional plasmonic nanoparticle chain lasers[J]. ACS Photonics, 5, 1822-1826(2018).
[42] Henzie J, Lee J, Lee M H et al. Nanofabrication of plasmonic structures[J]. Annual Review of Physical Chemistry, 60, 147-165(2009).
[43] Siegman A E. Lasers[M]. Mill Valley: University Science Books, 466-472(1986).
[44] Chen Y C, Chen Q S, Fan X D. Lasing in blood[J]. Optica, 3, 809-815(2016).
[45] Yokoyama H, Nishi K, Anan T et al. Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities[J]. Optical and Quantum Electronics, 24, S245-S272(1992).
[48] Nefedkin N E, Zyablovsky A, Andrianov E S et al. Mode cooperation in a two-dimensional plasmonic distributed-feedback laser[J]. ACS Photonics, 5, 3031-3039(2018).
[49] Wang D Q, Wang W J, Knudson M P et al. Structural engineering in plasmon nanolasers[J]. Chemical Reviews, 118, 2865-2881(2017).
[50] Chen H Z, Hu J Q, Wang S et al. Imaging the dark emission of spasers[J]. Science Advances, 3, e1601962(2017).
[51] Hakala T K, Moilanen A J, Vakevainen A I et al. Bose-Einstein condensation in a plasmonic lattice[J]. Nature Physics, 14, 739-744(2018).
[52] Hoang T B, Akselrod G M, Yang A K et al. Millimeter-scale spatial coherence from a plasmon laser[J]. Nano Letters, 17, 6690-6695(2017).
[53] Basov D N, Fogler M M. 354(6309): aag1992[J]. Garcia de Abajo F J. Polaritons invan der Waals materials. Science(2016).
[54] Schneider C, Rahimi-Iman A, Kim N Y et al. An electrically pumped polariton laser[J]. Nature, 497, 348-352(2013).
[55] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 445, 39-46(2007).
[56] Balili R, Hartwell V, Snoke D et al. Bose-Einstein condensation of microcavity polaritons in a trap[J]. Science, 316, 1007-1010(2007).
[57] Kasprzak J, Richard M, Kundermann S et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).
[58] Tao T, Zhi T, Liu B et al. Plasmonic nanolasers: electron-beam-driven III-nitride plasmonic nanolasers in the deep-UV and visible region[J]. Small, 16, 2070001(2020).
[59] Stockman M I. Spasers explained[J]. Nature Photonics, 2, 327-329(2008).
[61] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 43, 2327-2335(1972).
[62] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[63] Oulton R F. Surface plasmon lasers: sources of nanoscopic light[J]. Materials Today, 15, 26-34(2012).
[64] Schokker A H, Koenderink A F. Lasing at the band edges of plasmonic lattices[J]. Physical Review B, 90, 155452(2014).
[65] Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives[J]. Reports on Progress in Physics, 79, 086501(2016).
[66] Guo X, Ma Y G, Wang Y P et al. Nanowire plasmonic waveguides, circuits and devices[J]. Laser & Photonics Reviews, 7, 855-881(2013).
[69] Fei Z, Scott M E, Gosztola D J et al. Nano-optical imaging of WSe2waveguide modes revealing light-exciton interactions[J]. Physical Review B, 94, 081402(2016).
[70] Li Y J, Lv Y, Zou C L et al. Output coupling of perovskite lasers from embedded nanoscale plasmonic waveguides[J]. Journal of the American Chemical Society, 138, 2122-2125(2016).
[71] Dolores-Calzadilla V, Romeira B, Pagliano F et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon[J]. Nature Communications, 8, 14323(2017).
[72] Kewes G, Herrmann K, Rodríguez-Oliveros R et al. Limitations of particle-based spasers[J]. Physical Review Letters, 118, 237402(2017).
[73] Deeb C, Guo Z, Yang A K et al. Correlating nanoscopic energy transfer and far-field emission to unravel lasing dynamics in plasmonic nanocavity arrays[J]. Nano Letters, 18, 1454-1459(2018).
[74] Hinke Schokker A, Femius Koenderink A. Statistics of randomized plasmonic lattice lasers[J]. ACS Photonics, 2, 1289-1297(2015).
[75] Zhai T R, Xu Z Y, Wu X F et al. Ultra-thin plasmonic random lasers[J]. Optics Express, 24, 437-442(2016).
[76] Wang Z X, Meng X G, Kildishev A V et al. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers[J]. Laser & Photonics Reviews, 11, 1700212(2017).
[78] Ning S Y, Wu Z X, Dong H et al. The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles[J]. Organic Electronics, 30, 165-170(2016).
[79] Fallert J. Dietz R J B, Hauser M, et al. Random lasing in ZnO nanocrystals[J]. Journal of Luminescence, 129, 1685-1688(2009).
[80] Wang Z X, Meng X G, Choi S et al. Controlling random lasing with three-dimensional plasmonic nanorod metamaterials[J]. Nano Letters, 16, 2471-2477(2016).
[81] Lu Y, Kim J, Chen H et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 337, 450-453(2012).
[82] Zhang Q, Li G Y, Liu X F et al. A room temperature low-threshold ultraviolet plasmonic nanolaser[J]. Nature Communications, 5, 4953(2014).
[83] Zhang Q, Shang Q Y, Shi J et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material[J]. ACS Photonics, 4, 2789-2796(2017).
[84] Lu J F, Jiang M M, Wei M et al. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers[J]. ACS Photonics, 4, 2419-2424(2017).
[85] Fang C Y, Pan S H, Vallini F et al. Lasing action in low-resistance nanolasers based on tunnel junctions[J]. Optics Letters, 44, 3669-3672(2019).
[86] Bjork G, Karlsson A, Yamamoto Y. Definition of alaser threshold[J]. Physical Review A, 50, 1675-1680(1994).
[88] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).
[89] Kwon S H, Kang J H, Seassal C et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Letters, 10, 3679-3683(2010).
[90] Genov D A, Oulton R F, Bartal G et al. Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures[J]. Physical Review B, 83, 245312(2011).
[92] Li J T, Lin Y, Lu J F et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano, 9, 6794-6800(2015).
[94] Wang S, Chen H Z, Ma R M. High performance plasmonic nanolasers with external quantum efficiency exceeding 10[J]. Nano Letters, 18, 7942-7948(2018).
[95] Ding K, Yin L J, Hill M T et al. An electrical injection metallic cavity nanolaser with azimuthal polarization[J]. Applied Physics Letters, 102, 041110(2013).
[97] Chou Y H, Chou B T, Chiang C K et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers[J]. ACS Nano, 9, 3978-3983(2015).
[98] Huang X P, Zhang P F, Lin E et al. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array[J]. Applied Physics A, 123, 605(2017).
[99] Chen Z X, Lai B Y, Zhang J M et al. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers[J]. Nanotechnology, 25, 295203(2014).
[100] Wu D, Jiang Y, Li S Y et al. Construction of high-quality CDS: Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications[J]. Nanotechnology, 22, 405201(2011).
[101] Husham M, Hassan Z, Selman A M et al. Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics[J]. Sensors and Actuators A: Physical, 230, 9-16(2015).
[102] Ma R M, Dai L, Qin G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires[J]. Applied Physics Letters, 90, 093109(2007).
[103] Ma R M, Dai L, Huo H B et al. High-performance logic circuits constructed on single CdS nanowires[J]. Nano Letters, 7, 3300-3304(2007).
[104] Weber C, Becker U, Renner R et al. Measurement of the diffusion-length of carriers and excitons in CdS using laser-induced transient gratings[J]. Zeitschrift für Physik B Condensed Matter, 72, 379-384(1988).
[106] Liu Y, Zapien J A, Shan Y et al. Wavelength-tunable lasing in single-crystal CdS1-XSeX nanoribbons[J]. Nanotechnology, 18, 365606(2007).
[107] Long D B, Li M K, Meng D X et al. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys[J]. Journal of Applied Physics, 123, 105103(2018).
[108] Winkler J M, Rabouw F T, Rossinelli A A et al. Room-temperature strong coupling of CdSe nanoplatelets and plasmonic hole arrays[J]. Nano Letters, 19, 108-115(2019).
[109] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).
[110] Lee C J, Yeh H, Cheng F et al. Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength[J]. ACS Photonics, 4, 1431-1439(2017).
[111] Wu C Y, Kuo C T, Wang C Y et al. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure[J]. Nano Letters, 11, 4256-4260(2011).
[112] Hou Y, Renwick P, Liu B et al. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold[J]. Scientific Reports, 4, 5014(2015).
[113] Liu B, Smith R M, Athanasiou M et al. Temporally and spatially resolved photoluminescence investigation of (112 -2) semi-polar InGaN/GaN multiple quantum Wells grown on nanorod templates[J]. Applied Physics Letters, 105, 261103(2014).
[114] Chen G N. McGuckin T, Hawley C J, et al. Subsurface imaging of coupled carrier transport in GaAs/AlGaAs core-shell nanowires[J]. Nano Letters, 15, 75-79(2015).
[115] Huang C, Sun W Z, Fan Y B et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate[J]. ACS Nano, 12, 3865-3874(2018).
[116] Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 10, 391-402(2015).
[117] Sutherland B R, Hoogland S, Adachi M M et al. Perovskite thin films via atomic layer deposition[J]. Advanced Materials, 27, 53-58(2015).
[118] Sutherland B R, Sargent E H. Perovskite photonic sources[J]. Nature Photonics, 10, 295-302(2016).
[119] Veldhuis S A, Boix P P, Yantara N et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 28, 6804-6834(2016).
[120] Yu H C, Ren K K, Wu Q et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability[J]. Nanoscale, 8, 19536-19540(2016).
[121] Zhang Q, Su R, Du W N et al. Advances in small perovskite-based lasers[J]. Small Methods, 1, 1700163(2017).
[122] McPeak K M, Jayanti S V, Kress S J P et al. Plasmonic films can easily be better: rules and recipes[J]. ACS Photonics, 2, 326-333(2015).
[123] Varytis P, Busch K. Negative asymmetry parameter in plasmonic core-shell nanoparticles[J]. Optics Express, 28, 1714-1721(2020).
[125] Tohari M M, Lyras A. AlSalhi M S. A novel metal nanoparticles-graphene nanodisks-quantum dots hybrid-system-based spaser[J]. Nanomaterials, 10, 416(2020).
[126] Warnakula T, Gunapala S D, Stockman M I et al. Cavity quantum electrodynamic analysis of spasing in nanospherical dimers[J]. Physical Review B, 100, 085439(2019).
[128] Wang L W, Qu J L, Song J et al. A novel plasmonic nanolaser based on fano resonances with super low threshold[J]. Plasmonics, 12, 1145-1151(2017).
[129] Chandrasekar R, Wang Z X, Meng X G et al. Lasing action with gold nanorod hyperbolic metamaterials[J]. ACS Photonics, 4, 674-680(2017).
[130] Galanzha E I, Weingold R, Nedosekin D A et al. Spaser as abiological probe[J]. Nature Communications, 8, 15528(2017).
[131] Pan S H, Deka S S, El Amili A et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures[J]. Progress in Quantum Electronics, 59, 1-18(2018).
[132] Cheng C W, Liao Y J, Liu C Y et al. Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions[J]. ACS Photonics, 5, 2624-2630(2018).
[133] Chung Y C, Cheng P J, Chou Y H et al. Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers[J]. Scientific Reports, 7, 39813(2017).
[134] Liu S L, Sheng B W, Wang X Q et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers[J]. Applied Physics Letters, 112, 231904(2018).
[135] AlOtaibi B, Fan S Z, Wang D F et al. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires[J]. ACS Catalysis, 5, 5342-5348(2015).
[136] Kibria M G. Nguyen H P T, Cui K, et al. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures[J]. ACS Nano, 7, 7886-7893(2013).
[137] Kulriya P K, Singh V N, Agarwal D C et al. Localized surface plasmon resonance studies on Pd/C nano-composite system: effect of metal concentration and annealing temperature[J]. Journal of Nanoscience and Nanotechnology, 20, 3859-3865(2020).
[138] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009).
[140] Khrapach I, Withers F, Bointon T H et al. Novel highly conductive and transparent graphene-based conductors[J]. Advanced Materials, 24, 2844-2849(2012).
[141] Apalkov V, Stockman M I. Proposed graphene nanospaser[J]. Light: Science & Applications, 3, e191(2014).
[143] Rupasinghe C, Rukhlenko I D, Premaratne M. Spaser made of graphene and carbon nanotubes[J]. ACS Nano, 8, 2431-2438(2014).
[144] Zolotovskii I O, Dadoenkova Y S, Moiseev S G et al. Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene[J]. Physical Review A, 97, 053828(2018).
[145] Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range[Invited][J]. Optical Materials Express, 1, 1090-1099(2011).
[146] Naik G V, Schroeder J, Ni X J et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths[J]. Optical Materials Express, 3, 1658-1659(2012).
[147] Wu Z Y, Chen J, Mi Y et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers[J]. Advanced Optical Materials, 6, 1800674(2018).
[148] Yang A K, Wang D Q, Wang W J et al. Coherent light sources at the nanoscale[J]. Annual Review of Physical Chemistry, 68, 83-99(2017).
[150] Chou Y H, Hong K B, Chang C T et al. Ultracompact pseudowedge plasmonic lasers and laser arrays[J]. Nano Letters, 18, 747-753(2018).
[151] MacDonald K F, Samson Z L, Stockman M I et al. Ultrafast active plasmonics[J]. Nature Photonics, 3, 55-58(2009).
[153] Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 1, e20(2012).
[154] Hill M T. Marell M J H, Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 17, 11107-11112(2009).
[155] Ma R M, Oulton R F, Sorger V J et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 10, 110-113(2011).
[156] Hinke Schokker A, van Riggelen F, Hadad Y et al. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices[J]. Physical Review B, 95, 14(2017).
[157] Yang A K, Li Z Y, Knudson M P et al. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals[J]. ACS Nano, 9, 11582-11588(2015).
[158] Lheureux G, Azzini S, Symonds C et al. Polarization-controlled confined Tamm plasmon lasers[J]. ACS Photonics, 2, 842-848(2015).
[159] Li Y, Liu B, Zhang R et al. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface[J]. Journal of Applied Physics, 117, 153103(2015).
[160] Zhang D K, Chen S J, Huang Y Z et al. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser[J]. Journal of Applied Physics, 117, 023106(2015).
[161] Keshmarzi E K, Niall Tait R, Berini P. Single-mode surface plasmon distributed feedback lasers[J]. Nanoscale, 10, 5914-5922(2018).
Get Citation
Copy Citation Text
Zhi Ting, Tao Tao, Liu Bin, Zhang Rong. Surface Plasmon Semiconductor Nanolaser[J]. Chinese Journal of Lasers, 2020, 47(7): 701010
Special Issue:
Received: Apr. 16, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Bin Liu (bliu@nju.edu.cn)