Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061505(2020)

Super-Resolution Reconstruction Algorithm Based on Adaptive Image Online Dictionary Learning

Deqiang Cheng*, Wenjie Yu**, Xin Guo, Huandong Zhuang, and Xinzhu Fu
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • show less
    Figures & Tables(13)
    Super-resolution reconstruction based on sparse encoding
    Visualization of adaptive value for the image of Lenna
    Comparison of reconstruction for different images when the magnification factor is 2. (a) Baby; (b Lenna; (c) butterfly
    Comparison of reconstruction for image of baby when the magnification factor is 3
    Comparison of reconstruction for image of baby when the magnification factor is 4
    Comparison of reconstruction under Gaussian noise environment with variance of 0.0005
    Comparison of reconstruction under pepper & salt noise environment with density of 0.001
    • Table 1. Numerical comparison of reconstruction for different images when the magnification factor is 2

      View table

      Table 1. Numerical comparison of reconstruction for different images when the magnification factor is 2

      MethodEvaluation indexBabyLennaButterflySubwayManBikeBaboonMonarch
      RMSE4.1575.45512.57210.00910.21315.47917.3376.673
      BicubicPSNR37.05934.71327.46229.44029.26125.65724.67432.958
      SSIM0.9510.9110.9150.8710.8450.8500.6960.959
      RMSE4.62212.10815.99111.62410.92621.07019.4427.543
      NEPSNR36.88928.66926.55927.41628.29121.65722.58931.211
      SSIM0.8930.7880.7370.7530.7860.5910.5050.882
      RMSE3.6014.5617.8368.6238.86311.35716.1574.701
      Ours1PSNR38.38436.29931.57230.80230.50028.40125.28636.031
      SSIM0.9630.9270.9580.9080.8800.9140.7590.970
      RMSE3.6034.5747.8458.5208.88111.48616.1414.718
      Ours2PSNR38.35136.27631.56230.84630.48328.32225.29535.996
      SSIM0.9630.9260.9580.9090.8800.91270.7590.971
      RMSE3.6054.5717.8438.5648.85411.41416.1484.675
      Ours3PSNR38.36036.28031.56330.85030.50828.35325.29136.079
      SSIM0.9630.9260.9580.9100.8800.9140.7600.971
    • Table 2. Numerical comparison of reconstruction for different images when the magnification factor is 2

      View table

      Table 2. Numerical comparison of reconstruction for different images when the magnification factor is 2

      MethodEvaluation indexBabyLennaButterflySubwayManBikeBaboonMonarch
      RMSE3.6564.6317.9118.6968.88511.61916.2185.145
      ScSr1[14]PSNR38.26236.21531.50230.70730.48428.20725.26935.300
      SSIM0.9610.9250.9560.9060.8780.9100.7570.967
      RMSE3.6334.5937.8848.6728.86611.59416.1855.104
      ODL1[17]PSNR38.27036.23931.51830.73830.49728.22625.27235.309
      SSIM0.9620.9260.9570.9070.8790.9110.7580.968
      RMSE3.6014.5617.8368.6238.86311.35716.1574.701
      Ours1PSNR38.38436.29931.57230.80230.50028.40125.28636.031
      SSIM0.9630.9270.9580.9080.8800.9140.7590.97
      RMSE3.6934.6928.2688.8028.99512.29516.1734.881
      ScSr2[14]PSNR38.20536.08331.15830.57130.37727.79625.27735.762
      SSIM0.9610.9210.9550.9030.8760.9030.7570.969
      RMSE3.6514.6528.1088.7768.98612.28216.1674.834
      ODL2[17]PSNR38.23136.12731.27430.59230.38527.80125.28135.785
      SSIM0.9620.9250.9560.9050.8770.9040.7580.970
      RMSE3.6034.5747.8458.5208.88111.48616.1414.718
      Ours2PSNR38.35136.29631.56230.84630.48328.32225.29535.996
      SSIM0.9630.9260.9580.9090.8800.91270.7590.971
      RMSE3.7514.8019.3098.9829.38512.96316.1795.479
      ScSr3[14]PSNR38.08035.88730.04330.41530.13427.20625.28334.791
      SSIM0.9600.9230.9420.9010.8740.8950.7580.966
      RMSE3.7074.7689.2358.9669.22012.94416.1545.406
      ODL3[17]PSNR38.10635.91230.14530.44030.15727.21425.28834.810
      SSIM0.9610.9240.9480.9020.8750.8960.7590.967
      RMSE3.6054.5717.8438.5648.85411.41416.1484.675
      Ours3PSNR38.36036.29031.56330.85030.50828.35325.29136.079
      SSIM0.9630.9260.9580.9100.8800.9140.7600.971
    • Table 3. Numerical comparison of reconstruction for different images when the magnification factor is 3

      View table

      Table 3. Numerical comparison of reconstruction for different images when the magnification factor is 3

      MethodEvaluation indexBabyManButterflyBaboon
      RMSE5.95613.20618.61120.992
      BicubicPSNR33.94127.03224.05623.013
      SSIM0.9040.7490.8190.543
      RMSE6.77414.11519.01322.873
      NEPSNR30.85723.90221.66721.584
      SSIM0.8810.7060.7980.610
      RMSE5.54112.34515.54920.601
      ScSr1[14]PSNR34.60727.62725.61923.136
      SSIM0.9140.7810.8580.590
      RMSE5.51812.32215.52320.555
      ODL1[17]PSNR34.62627.63925.63523.197
      SSIM0.9150.7820.8590.591
      RMSE5.39512.17415.32120.224
      Ours1PSNR34.82327.74425.74923.338
      SSIM0.9200.7840.8650.600
      RMSE5.44712.47315.64920.440
      ScSr2[14]PSNR34.70927.71125.53523.242
      SSIM0.9170.7810.8580.593
      RMSE5.45912.19015.62120.418
      ODL2[17]PSNR34.72027.73225.57923.255
      SSIM0.9160.7820.8590.594
      RMSE5.39512.10415.50120.224
      Ours2PSNR34.82327.79325.64823.338
      SSIM0.9200.7840.8630.600
      RMSE5.57712.20215.70020.663
      ScS3[14]PSNR34.58927.72925.53923.168
      SSIM0.9120.7820.8560.588
      RMSE5.54012.18615.68920.615
      ODL3[17]PSNR34.59227.73525.54123.171
      SSIM0.9130.7830.8570.589
      RMSE5.51312.17215.52020.576
      Ours3PSNR34.63627.74525.63623.187
      SSIM0.9150.7840.8610.591
    • Table 4. Comparison of reconstruction for different images when the magnification factor is 4

      View table

      Table 4. Comparison of reconstruction for different images when the magnification factor is 4

      MethodEvaluation indexBabyManButterflyBaboon
      RMSE7.60115.33423.19222.934
      BicubicPSNR31.82825.73422.14522.244
      SSIM0.8570.6760.7340.451
      RMSE7.08315.99324.85022.663
      NEPSNR31.88025.00221.78522.291
      SSIM0.8580.6050.6900.473
      RMSE6.77314.25821.26322.601
      ScSr1[14]PSNR32.86426.44722.90522.378
      SSIM0.8760.7110.7540.490
      RMSE6.75114.20321.21822.512
      ODL1[17]PSNR32.87226.45022.91922.407
      SSIM0.8770.7120.7550.491
      RMSE6.73514.10921.04022.497
      Ours1PSNR32.89326.46222.99222.413
      SSIM0.8780.7130.7570.492
      RMSE6.74714.48821.09122.552
      ScSr2[14]PSNR32.85926.23922.97022.009
      SSIM0.8760.7050.7550.490
      RMSE6.75614.46421.08422.521
      ODL2[17]PSNR32.86526.24722.97322.103
      SSIM0.8770.7060.7560.491
      RMSE6.73814.18421.04322.478
      Ours2PSNR32.88826.41622.99022.420
      SSIM0.8780.7130.7630.492
      RMSE6.76114.25821.14722.528
      ScS3[14]PSNR32.87426.38022.94922.401
      SSIM0.8760.7100.7540.490
      RMSE6.73914.21721.12822.513
      ODL3[17]PSNR32.88626.39622.95622.407
      SSIM0.8770.7110.7550.491
      RMSE6.68114.19520.96322.371
      Ours3PSNR32.96226.40923.02522.462
      SSIM0.8800.7130.7630.495
    • Table 5. Numerical comparison of reconstruction under different Gaussian noise environment

      View table

      Table 5. Numerical comparison of reconstruction under different Gaussian noise environment

      VarianceEvaluationindexBicubicNEScSr1ODL1Ours1ScSr2ODL2Ours2ScSr3ODL3Ours3
      RMSE5.45512.1084.6044.5934.5614.6604.6524.5744.7754.7684.571
      0PSNR34.71328.66936.23136.23936.29936.11936.12736.27635.90735.91236.280
      SSIM0.9110.7880.9250.9260.9270.9240.9250.9260.9230.9240.926
      RMSE6.9427.0015.9035.8895.7276.3866.3776.2446.5976.5846.261
      0.0002PSNR32.62230.75734.05734.06834.30933.36833.37233.55633.08833.09233.532
      SSIM0.90808740.9280.9290.9320.8830.8840.8850.8820.8830.886
      RMSE7.4807.9927.4907.4777.4657.5837.5427.4877.7317.6957.463
      0.0005PSNR31.97320.66231.97131.98631.99631.90631.91131.97331.72431.73632.001
      SSIM0.8690.8310.8200.8210.8240.8210.8220.8230.8210.8220.824
    • Table 6. Numerical comparison of reconstruction under different pepper & salt noise environment

      View table

      Table 6. Numerical comparison of reconstruction under different pepper & salt noise environment

      DensityEvaluationindexBicubicNEScSr1ODL1Ours1ScSr2ODL2Ours2ScSr3ODL3Ours3
      RMSE5.45512.1084.6974.5934.5614.6734.6524.5744.7874.7684.571
      0PSNR34.71328.66936.23136.23936.29936.11436.12736.27635.90635.91236.280
      SSIM0.9110.7880.9250.9260.9270.9240.9250.9260.9230.9240.926
      RMSE6.9697.1455.9025.8885.8215.8955.8895.7276.5016.4866.084
      0.0005PSNR32.58832.07734.05734.06634.16534.05934.06834.30933.21933.22833.783
      SSIM0.9060.8730.9270.9280.9290.9280.9290.9320.9220.9230.929
      RMSE7.3057.6616.8726.8446.7997.1017.0666.9647.1657.1596.862
      0.001PSNR32.18131.87732.75732.76132.81732.47332.48032.60732.35932.36532.737
      SSIM0.9000.8430.9160.9170.9180.9120.9130.9150.9120.9130.918
    Tools

    Get Citation

    Copy Citation Text

    Deqiang Cheng, Wenjie Yu, Xin Guo, Huandong Zhuang, Xinzhu Fu. Super-Resolution Reconstruction Algorithm Based on Adaptive Image Online Dictionary Learning[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 3, 2019

    Accepted: Sep. 2, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Deqiang Cheng (chengdq@cumt.edu.cn), Wenjie Yu (wjyu@cumt.edu.dn)

    DOI:10.3788/LOP57.061505

    Topics