Metrology & Measurement Technology, Volume. 45, Issue 3, 70(2025)

Deep learning⁃based demodulation of Fabry⁃Pérot vernier spectral signals

Hui WANG1, Qichao ZHAO2, Haoqi WANG1, Zhiqiang SHAO3, Shuang XIAO1, and Bin LIU1、*
Author Affiliations
  • 1Harbin Engineering University, Harbin150001, China
  • 2Shanghai Institute of Mechanical and Electrical Engineering, Shanghai201109, China
  • 3China Electronics Technology Group Corporation 49th Research Institute, Harbin150028, China
  • show less
    Figures & Tables(12)
    The structure of Fabry⁃Pérot vernier sensor
    Schematic diagram of experimental equipment connection
    Spectral drift
    The relationship between the wavelength of the resonant wave trough and pressure changes
    Reflectance spectrums mesh surface plot of F⁃P sensor
    Construction of the pressure demodulation model
    Loss visualization
    Demodulation performance of CNN algorithm in test set
    Comparison of CNN and CNN⁃LSTM test results
    • Table 1. Experimental configuration

      View table
      View in Article

      Table 1. Experimental configuration

      CPU显卡操作系统开发平台开发框架可视化平台
      Intel® Xeon® w9-3495X 1.90 GHzNVIDIA GeForce RTX 4090Win10PycharmPytorchTensorboard
    • Table 2. The results of 10⁃fold cross⁃validation for the pressure demodulation model

      View table
      View in Article

      Table 2. The results of 10⁃fold cross⁃validation for the pressure demodulation model

      折数训练损失训练准确率/%验证损失验证准确率/%
      11.558 199.681.554 399.90
      21.547 499.981.546 8100.00
      31.562 199.241.563 998.80
      41.640 290.691.640 090.80
      51.694 289.901.689 190.30
      61.636 290.861.636 590.90
      71.549 299.991.548 2100.00
      81.632 790.911.632 790.90
      91.813 272.711.812 272.70
      101.634 490.891.633 691.00
      平均1.626 892.491.625 792.53
    • Table 3. Comparison of experimental results of pressure demodulation models

      View table
      View in Article

      Table 3. Comparison of experimental results of pressure demodulation models

      模型训练 损失训练 准确率 / %验证 损失验证 准确率 / %
      CNN1.626 892.491.625 792.53
      CNN⁃LSTM1.682 896.981.679 796.97
    Tools

    Get Citation

    Copy Citation Text

    Hui WANG, Qichao ZHAO, Haoqi WANG, Zhiqiang SHAO, Shuang XIAO, Bin LIU. Deep learning⁃based demodulation of Fabry⁃Pérot vernier spectral signals[J]. Metrology & Measurement Technology, 2025, 45(3): 70

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Sensor Technology

    Received: Feb. 17, 2025

    Accepted: --

    Published Online: Jul. 31, 2025

    The Author Email:

    DOI:10.11823/j.issn.1674-5795.2025.03.06

    Topics